

Python and AWS Cookbook

Mitch Garnaat

Beijing • Cambridge • Farnham • Köln • Sebastopol • Tokyo

Python and AWS Cookbook
by Mitch Garnaat

Copyright © 2012 Mitch Garnaat. All rights reserved.
Printed in the United States of America.

Published by O’Reilly Media, Inc., 1005 Gravenstein Highway North, Sebastopol, CA 95472.

O’Reilly books may be purchased for educational, business, or sales promotional use. Online editions
are also available for most titles (http://my.safaribooksonline.com). For more information, contact our
corporate/institutional sales department: (800) 998-9938 or corporate@oreilly.com.

Editors: Julie Steele and Meghan Blanchette
Production Editor: Teresa Elsey

Cover Designer: Karen Montgomery
Interior Designer: David Futato
Illustrator: Robert Romano

Revision History for the First Edition:
2011-10-21 First release

See http://oreilly.com/catalog/errata.csp?isbn=9781449305444 for release details.

Nutshell Handbook, the Nutshell Handbook logo, and the O’Reilly logo are registered trademarks of
O’Reilly Media, Inc. Python and AWS Cookbook, the image of a sand grouse, and related trade dress are
trademarks of O’Reilly Media, Inc.

Many of the designations used by manufacturers and sellers to distinguish their products are claimed as
trademarks. Where those designations appear in this book, and O’Reilly Media, Inc., was aware of a
trademark claim, the designations have been printed in caps or initial caps.

While every precaution has been taken in the preparation of this book, the publisher and author assume
no responsibility for errors or omissions, or for damages resulting from the use of the information con-
tained herein.

ISBN: 978-1-449-30544-4

[LSI]

1319206024

http://my.safaribooksonline.com/?portal=oreilly
mailto:corporate@oreilly.com
http://oreilly.com/catalog/errata.csp?isbn=9781449305444

Table of Contents

Preface . v

1. General Info . 1
1.1 A Quick Note About Python 1
1.2 Installing boto 1
1.3 Getting Started with Amazon Web Services 4
1.4 Using boto with Eucalyptus 7
1.5 Using boto with Google Cloud Storage 8
1.6 Finding Available Regions for AWS 9
1.7 Enabling Debug Output with boto 10
1.8 Controlling Socket Timeouts in boto 10

2. EC2 Recipes . 11
2.1 Launching an Instance 11
2.2 Keeping Track of Instances with Tags 15
2.3 Accessing the Console Log 17
2.4 Uploading Your Own SSH Keypair 17
2.5 Synchronizing SSH Keypairs Across EC2 Regions 18
2.6 Associate an Elastic IP Address with an Instance 19
2.7 Attach a Persistent EBS Volume to an Instance 20
2.8 Back Up Your EBS Volumes 22
2.9 Restore a Volume from a Snapshot 23

2.10 Clone an Existing Instance 24
2.11 Find All Running EC2 Instances 26
2.12 Monitoring the Performance of Your Instance 27
2.13 Getting Notifications 31
2.14 Storing Custom Data in CloudWatch 36
2.15 Executing Custom Scripts upon Instance Startup 37

3. S3 Recipes . 47
3.1 Create a Bucket 47

iii

3.2 Create a Bucket in a Specific Location 48
3.3 Store Private Data 49
3.4 Store Metadata with an Object 50
3.5 Computing Total Storage Used by a Bucket 52
3.6 Copy an Existing Object to Another Bucket 53
3.7 Modify the Metadata of an Existing Object 54
3.8 Find Out Who Is Accessing Your Data 54
3.9 Reduce the Cost of Storing Noncritical Data 56

3.10 Generating Expiring URLs for S3 Objects 57
3.11 Preventing Accidental Deletion of Data from S3 58
3.12 Hosting Static Websites on S3 60
3.13 Uploading Large Objects to S3 61

iv | Table of Contents

Preface

My first experience with Amazon Web Services was on March 14, 2006. I had seen a
press release announcing a new web-based storage service called Simple Storage Service
(S3), and I remember thinking how strange it seemed that Amazon would be offering
such a service. Nevertheless, I signed up for an account and started reading the
documentation.

I was blown away by S3. The simple, affordable pricing model. The elegant REST API.
The virtually unlimited storage capacity. Amazing. The only thing that could make this
any better, I thought to myself, would be a Python interface! That day I started coding
what would become the boto library, which is what we will use in this book to interface
with Amazon Web Services.

I still believe that Python is a great language for interacting with AWS and other cloud
services. The fantastic standard libraries that come with all Python installations (Bat-
teries Included!), the vast collection of modules available for quick download via the
Python Cheese Shop, and the ability to work interactively with cloud services, trying
requests and immediately seeing the results, combine to provide a powerful and fun
way to develop applications and control your cloud-based infrastructure.

I've always found that the best way to learn something new is to see lots of examples.
That’s what this little book will focus on: solutions to many common problems related
to EC2 and S3 (using Python and boto). I hope you find it useful!

Conventions Used in This Book
The following typographical conventions are used in this book:

Italic
Indicates new terms, URLs, email addresses, filenames, and file extensions.

Constant width
Used for program listings, as well as within paragraphs to refer to program elements
such as variable or function names, databases, data types, environment variables,
statements, and keywords.

v

https://github.com/boto/boto
http://pypi.python.org/

Constant width bold
Shows commands or other text that should be typed literally by the user.

Constant width italic
Shows text that should be replaced with user-supplied values or by values deter-
mined by context.

This icon signifies a tip, suggestion, or general note.

This icon indicates a warning or caution.

Using Code Examples
This book is here to help you get your job done. In general, you may use the code in
this book in your programs and documentation. You do not need to contact us for
permission unless you’re reproducing a significant portion of the code. For example,
writing a program that uses several chunks of code from this book does not require
permission. Selling or distributing a CD-ROM of examples from O’Reilly books does
require permission. Answering a question by citing this book and quoting example
code does not require permission. Incorporating a significant amount of example code
from this book into your product’s documentation does require permission.

We appreciate, but do not require, attribution. An attribution usually includes the title,
author, publisher, and ISBN. For example: “Python and AWS Cookbook by Mitch
Garnaat (O’Reilly). Copyright 2012 Mitch Garnaat, 978-1-449-30544-4.”

If you feel your use of code examples falls outside fair use or the permission given above,
feel free to contact us at permissions@oreilly.com.

Safari® Books Online
Safari Books Online is an on-demand digital library that lets you easily
search over 7,500 technology and creative reference books and videos to
find the answers you need quickly.

With a subscription, you can read any page and watch any video from our library online.
Read books on your cell phone and mobile devices. Access new titles before they are
available for print, and get exclusive access to manuscripts in development and post
feedback for the authors. Copy and paste code samples, organize your favorites,

vi | Preface

mailto:permissions@oreilly.com

download chapters, bookmark key sections, create notes, print out pages, and benefit
from tons of other time-saving features.

O’Reilly Media has uploaded this book to the Safari Books Online service. To have full
digital access to this book and others on similar topics from O’Reilly and other pub-
lishers, sign up for free at http://my.safaribooksonline.com.

How to Contact Us
Please address comments and questions concerning this book to the publisher:

O’Reilly Media, Inc.
1005 Gravenstein Highway North
Sebastopol, CA 95472
800-998-9938 (in the United States or Canada)
707-829-0515 (international or local)
707-829-0104 (fax)

We have a web page for this book, where we list errata, examples, and any additional
information. You can access this page at:

http://shop.oreilly.com/product/0636920020202.do

To comment or ask technical questions about this book, send email to:

bookquestions@oreilly.com

For more information about our books, courses, conferences, and news, see our website
at http://www.oreilly.com.

Find us on Facebook: http://facebook.com/oreilly

Follow us on Twitter: http://twitter.com/oreillymedia

Watch us on YouTube: http://www.youtube.com/oreillymedia

Preface | vii

http://my.safaribooksonline.com/?portal=oreilly
http://shop.oreilly.com/product/0636920020202.do
mailto:bookquestions@oreilly.com
http://www.oreilly.com
http://facebook.com/oreilly
http://twitter.com/oreillymedia
http://www.youtube.com/oreillymedia

CHAPTER 1

General Info

1.1 A Quick Note About Python
The examples in this book use Python 2.7.1, although they should work with any ver-
sion of Python from 2.5.x to 2.7.x. The boto library has not yet been ported and fully
tested on Python 3.x, although there are plans to do so in the near future.

All versions of Python, in both source form and precompiled for many popular plat-
forms, can be found at http://python.org.

1.2 Installing boto
The examples in this book require boto version 2.1 or later. There are several options
available to you when it comes to installing boto.

Download and Install from github.com
The boto project uses github as its source code repository. You can clone our github
repo locally and install boto from that cloned distribution. By doing so, you will always
have access to the very latest changes in boto. That includes the newest features, as well
as the newest bugs, so you will have to decide if this intrepid path is for you or not:

 % git clone https://github.com/boto/boto
 % cd boto
 % sudo python setup.py install

Manually Download and Install boto
The Python Cheese Shop is the official repository of Python packages. If you go to the
Cheese Shop (also known as PyPI) and search for boto, you will see a page like Fig-
ure 1-1, although it should be for version 2.1, not 2.0.

1

http://python.org
http://github.com
http://pypi.python.org/

Clicking on the boto-2.1.tar.gz link will download the compressed tarball containing
the source package for boto. Save this file on your local machine and follow this process
to install from the source package:

 % tar xfz boto-2.1.tar.gz
 % cd boto-2.1
 % sudo python setup.py install

Installing boto with easy_install
The easy_install utility makes it easy (of course!) to find, install, upgrade, and uninstall
Python packages. Before you can use the nice features of easy_install, you first need
to, erm, install it. Detailed instructions for installing the setuptools package (of which
easy_install is part) can be found at http://pypi.python.org/pypi/setuptools. Many Li-
nux distributions also have packages for setuptools. For example, on Ubuntu, you can
do this:

 % sudo apt-get install python-setuptools

On yum-based distros such as Fedora and CentOS, you can do:

 % sudo yum install python-setuptools

Once you have easy_install set up on your machine, installing boto is easy:

 % sudo easy_install boto

Figure 1-1. boto Page on PyPI

2 | Chapter 1: General Info

http://pypi.python.org/pypi/setuptools

Installing boto with pip
The pip utility is another tool to find, install, upgrade, and uninstall Python packages.
In my experience, both work well, so do a bit of research and make up your own mind.
Or use both! Detailed instructions for installing pip can be found at http://pypi.python
.org/pypi/pip. Once you have pip set up on your machine, installing boto is similarly
easy:

 % sudo pip install boto

Installing boto with virtualenv
One final option in the litany of installation options is actually not an installation tool
at all, but a very handy way of creating isolated Python environments. With virtua
lenv you can create any number of isolated, self-contained Python environments on
your workstation. Packages that are installed in these virtual environments will not
affect your system Python packages or other virtual environments. I have found this is
a very useful way to have many different projects in progress on my laptop without
worrying about changes or mistakes in one project affecting other projects or my global
environment. As an added benefit, once you have installed virtualenv and created an
environment, you automatically have access to both easy_install and pip within those
environments and installing software within the environment does not require super-
user or administrator rights.

Detailed instructions for installing virtualenv can be found at http://pypi.python.org/
pypi/virtualenv. Once you have virtualenv set up on your machine, you can set up a
virtual environment:

 % virtualenv paws

You can name your virtualenv whatever you like, obviously. You can then enable your
virtual environment and install boto:

 % cd paws
 % source bin/activate
 % pip install boto

Installing paramiko
The paramiko package implements the SSH2 protocol for secure connections to remote
machines. You can use boto without paramiko, but some of the EC2 recipes in this book
depend on the paramiko package, so I would recommend installing it. You can manually
install it using the instructions on http://www.lag.net/paramiko/, or, if you have installed
easy_install or pip, you can do easy_install paramiko or pip install paramiko.

Installing euca2ools
One final package you might want to install is euca2ools. This package was developed
by the Eucalyptus team to provide command-line tools that are compatible with the

1.2 Installing boto | 3

http://pypi.python.org/pypi/pip
http://pypi.python.org/pypi/pip
http://pypi.python.org/pypi/virtualenv
http://pypi.python.org/pypi/virtualenv
http://www.lag.net/paramiko/

tools supplied by AWS. euca2ools is written in Python and built on top of boto. It
provides a great set of tools to help you manage your cloud infrastructure as well as
providing good example code to study and extend.

euca2ools has been packaged by many Linux distros. On Ubuntu, you can install it via
sudo apt-get -y euca2ools. On yum-based distros, you can do sudo yum install
euca2ools. You can also get the latest version of the source code at https://launchpad
.net/euca2ools or download packaged source releases from http://open.eucalyptus.com/
downloads.

1.3 Getting Started with Amazon Web Services
Create Your AWS Account
The first thing you will need to do to use Amazon Web Services is sign up for an account.
Go to http://aws.amazon.com/ and click on the Sign Up Now button. If you already
have an account with Amazon.com and want to associate your AWS activity with that
account, you can simply log in with those credentials. If you prefer, you can create a
new account just for your AWS activity.

For detailed instructions on signing up for AWS, you can check out this tutorial, pro-
vided by RightScale.

Make sure your account has been enabled for at least the EC2 service and the S3 service.
The tutorial linked to above provides detailed instructions on signing up for services.

Once your account has been created, a variety of credentials will be associated with it:

AWS Account Credentials
These are the credentials you use to log into the AWS web portal and the AWS
Management Console and consist of an email address and a password. Since these
credentials control access to all of the other credentials discussed below, it is very
important to choose a strong password for this account and to age the password
aggressively.

AWS Account Number
This is the unique 12-digit number associated with your AWS account. Unlike the
other credentials we will discuss, this one is not a secret. The easiest way to find
your account number is to look in the upper-right corner of the web page after you
have logged into the AWS portal. You should see something like Figure 1-2.

The Account Number is a public identifier and is used mainly for sharing resources
within AWS. For example, if I create an AMI in EC2 and I want to share that AMI
with a specific user without making the AMI public, I would need to add that user’s
Account Number to the list of user IDs associated with the AMI. One potential
source of confusion here: even though the Account Number is displayed with

4 | Chapter 1: General Info

https://launchpad.net/euca2ools
https://launchpad.net/euca2ools
http://open.eucalyptus.com/downloads
http://open.eucalyptus.com/downloads
http://aws.amazon.com/
http://support.rightscale.com/1._Tutorials/01-RightScale/1.5_Sign-up_for_AWS
http://rightscale.com

hyphens separating the three groups of four digits, when it is used via the API, the
hyphens must be removed.

AccessKeyID and SecretAccessKey
These Access Identifiers are at the heart of all API access in AWS. Every REST or
Query API request made to every AWS service requires you to pass your
AccessKeyID to identify who you are. The APIs also require you to compute and
include a signature in the request.

The signature is calculated by concatenating a number of elements of the request
(e.g., timestamp, request name, parameters, etc.) into a StringToSign and then
creating a signature by computing an HMAC of the StringToSign using your
SecretAccessKey as the key.

When the request is received by AWS, the service concatenates the same String-
ToSign and then computes the signature based on the SecretAccessKey AWS has
associated with the AccessKeyID sent in the request. If they match, the request is
authenticated. If not, it is rejected.

The AccessKeyID associated with an account cannot be changed, but the
SecretAccessKey can be regenerated at any time using the AWS portal. Because the
SecretAccessKey is the shared secret upon which the entire authentication mech-
anism is based, if there is any risk that your SecretAccessKey has been compro-
mised, you should regenerate it.

X.509 Certificate
The other Access Identifier associated with your account is the X.509 Certificate.
You can provide your own certificate or you can have AWS generate a certificate
for you. This certificate can be used for authenticating requests when using the
SOAP versions of the AWS APIs, and it is also used when creating your own S3-
based AMIs in EC2. Essentially, the files that are created when bundling an AMI
are cryptographically signed using the X.509 cert associated with your account, so
if anyone were to try to tamper with the bundled AMI, the signature would be
broken and easily detected.

Figure 1-2. Finding Your AWS Account Number

1.3 Getting Started with Amazon Web Services | 5

When using the SOAP APIs, the X.509 certificate is as critically important from a
security point of view as the SecretAccessKey discussed above, and it should be
managed just as carefully. Remember, even if you don’t use SOAP, a hacker could!

SSH Keys
The final credential we need to discuss is the public/private keypair used for SSH
access to an EC2 instance. By default, an EC2 instance will allow SSH access only
by PublicKey authentication. I strongly recommend that you stick to this policy in
any AMIs you create for your own use. SSH keypairs can be generated via the AWS
Console and API, or you can import existing keypairs. You should create keypairs
for each individual in your organization that will need access to running instances
and guard those SSH keys carefully.

Managing Your AWS Credentials in boto
Once you have signed up for your AWS account and obtained your credentials, you
need to make boto aware of them. There are several ways to do this:

Explicitly pass credentials to boto
Each time you want to access some AWS service, you need to create a connection
to that service with boto. At that time, you can pass in your access key ID and secret
access key explicitly and boto will use those credentials when communicating with
the service:

% python
Python 2.7.1 (r271:86882M, Nov 30 2010, 10:35:34)
[GCC 4.2.1 (Apple Inc. build 5664)] on darwin
Type "help", "copyright", "credits" or "license" for more information.
>>> import boto
>>> ec2 = boto.connect_ec2(aws_access_key_id='my_access_key',
aws_secret_access_key='my_secret_key')

Most people find that this gets tedious pretty quickly.

Store credentials in environment variables
If no explicit credentials are passed to boto when making a connection (as shown
above), boto will look to see if the environment variables AWS_ACCESS_KEY_ID and
AWS_SECRET_ACCESS_KEY are defined in the user’s environment. If they are, boto will
use the values of these environment variables as the access key and secret key.

Store credentials in the boto config file
If boto doesn’t get credentials passed to it explicitly and it doesn’t find them in the
user’s environment, it will try to find them in the boto configuration files. By de-
fault, boto will look for configuration information in /etc/boto.cfg and in ~/.boto. If
you want to store your config info elsewhere, you can set the environment variable
BOTO_CONFIG to the path to the config file and boto will read it from there. To add
your credentials to the boto config file, you would add a section like this:

6 | Chapter 1: General Info

 [Credentials]
 aws_access_key_id = your_access_key
 aws_secret_access_key = your_secret_key

Once the credentials are stored in the boto config file, boto will use them automat-
ically each time you use it. This is the most convenient way to deal with your AWS
credentials. However, if you store your AWS credentials in your boto config file,
you should set the file protections such that the file is readable only by you.

A Quick Test
Hopefully, at this point you have boto installed and you have your AWS account created
and your credentials stored in environment variables or the boto config file. Before
moving on, let’s just do a quick test to verify that things are working:

% python
Python 2.7.1 (r271:86882M, Nov 30 2010, 10:35:34)
[GCC 4.2.1 (Apple Inc. build 5664)] on darwin
Type "help", "copyright", "credits" or "license" for more information.
>>> import boto
>>> ec2 = boto.connect_ec2()
>>> ec2.get_all_zones()
[Zone:us-east-1a, Zone:us-east-1b, Zone:us-east-1c, Zone:us-east-1d]
>>>

If you get roughly the same output when you run this little test, you should be all set
to proceed with the recipes. If not, double-check the previous steps. If you are still
stuck, try posting a question on the boto users group.

1.4 Using boto with Eucalyptus
What Is Eucalyptus?
From http://open.eucalyptus.com/learn/what-is-eucalyptus:

Eucalyptus enables the creation of on-premise private clouds, with no requirements for
retooling the organization’s existing IT infrastructure or need to introduce specialized
hardware. Eucalyptus implements an IaaS (Infrastructure as a Service) private cloud that
is accessible via an API compatible with Amazon EC2 and Amazon S3. This compatibility
allows any Eucalyptus cloud to be turned into a hybrid cloud, capable of drawing com-
pute resources from public cloud. And Eucalyptus is compatible with a wealth of tools
and applications that also adhere to the de facto EC2 and S3 standards.

In a nutshell, Eucalyptus allows you to set up your own AWS compatible mini-cloud
(or maxi-cloud if you have enough hardware). Almost all of the recipes in this book for
AWS will also work with Eucalyptus, so if you have some hardware, you can try all of
this out without leaving the comfort and safety of your own network.

1.4 Using boto with Eucalyptus | 7

http://groups.google.com/group/boto-users
http://open.eucalyptus.com/learn/what-is-eucalyptus

Getting and Installing Eucalyptus
For those interested in installing Eucalyptus, you might want to give the FastStart a try.
FastStart is a way to get Eucalyptus up and running quickly with as few steps as possible.

Using the Eucalyptus Community Cloud
You can also try out Eucalyptus without installing any software at all. Eucalyptus pro-
vides a sandbox hosted environment called the Eucalyptus Community Cloud, where
you can test-drive and experiment with Eucalyptus cloud software. For more informa-
tion, visit http://open.eucalyptus.com/try/community-cloud.

Managing Your Eucalyptus Credentials in boto
Once you have Eucalyptus up and running, boto makes it easy to connect to the system.
First, you can edit your boto config file to include your Eucalyptus hostname and
credentials:

 [Credentials]
 euca_access_key_id = your_euca_access_key
 euca_secret_access_key = your_euca_secret_key

 [Boto]
 eucalyptus_host = "DNS name or IP address of your Eucalyptus CLC"
 walrus_host = "DNS name or IP address of your Walrus"

Once the information is entered into your boto config file, you can connect to Euca-
lyptus (the EC2-compatible service) and Walrus (the S3-compatible service) like this:

% python
>>> import boto
>>> euca = boto.connect_euca()
>>> walrus = boto.connect_walrus()

1.5 Using boto with Google Cloud Storage
What Is Google Cloud Storage?
Google Cloud Storage for Developers is a RESTful service for storing and accessing
your data in Google’s infrastructure. While Google Cloud Storage and S3 each offer
some unique features of their own, they also have quite a bit of overlap both in func-
tionality and in base API. Google developers have contributed significantly to boto to
allow full access to Google Cloud Storage functionality in boto. Many of the S3 recipes
in this book will also work on Google Cloud Storage.

Managing Your Google Cloud Storage Credentials in boto
Since Google Cloud Storage is a separate service, it has its own set of credentials. You
can add these credentials to your boto config file like this:

8 | Chapter 1: General Info

http://open.eucalyptus.com/try/faststart
http://open.eucalyptus.com/try/community-cloud
http://code.google.com/apis/storage/

 [Credentials]
 gs_access_key_id = your_gs_access_key
 gs_secret_access_key = your_gs_secret_key

You can then create a connection to Google Cloud Storage:

% python
Python 2.7.1 (r271:86882M, Nov 30 2010, 10:35:34)
[GCC 4.2.1 (Apple Inc. build 5664)] on darwin
Type "help", "copyright", "credits" or "license" for more information.
>>> import boto
>>> gs = boto.connect_gs()

1.6 Finding Available Regions for AWS
By default, when you create a connection to the EC2 service in boto, it connects to the
US-EAST-1 region. Originally, that was the only region available, but AWS has expan-
ded its operations considerably and, at the time of this writing, EC2 was available in
the following regions, each with its own endpoint:

• us-east-1 [US-East (Northern Virginia)]

• us-west-1 [US-West (Northern California)]

• eu-west-1 [EU (Ireland)]

• ap-southeast-1 [Asia Pacific (Singapore)]

• ap-northeast-1 [Asia Pacific (Tokyo)]

boto provides a number of ways to find and connect to these regions. For example, the
following will return a list of all RegionInfo objects for a given service (EC2 in this case).
Each of those RegionInfo objects has a connect method, which will return a Connection
object for that region:

$ python
Python 2.7.1 (r271:86882M, Nov 30 2010, 10:35:34)
[GCC 4.2.1 (Apple Inc. build 5664)] on darwin
Type "help", "copyright", "credits" or "license" for more information.
>>> import boto.ec2
>>> boto.ec2.regions()
[RegionInfo:eu-west-1, RegionInfo:us-east-1, RegionInfo:ap-northeast-1,
RegionInfo:us-west-1, RegionInfo:ap-southeast-1]
>>> eu_conn = _[0].connect()

If you have the name of the region you want to connect to, you can also use this
approach:

$ python
Python 2.7.1 (r271:86882M, Nov 30 2010, 10:35:34)
[GCC 4.2.1 (Apple Inc. build 5664)] on darwin
Type "help", "copyright", "credits" or "license" for more information.
>>> import boto.ec2
>>> eu_conn = boto.ec2.connect_to_region('eu-west-1')
>>>

1.6 Finding Available Regions for AWS | 9

Finally, if you would like to change the default region boto uses when creating an EC2
connection, you can do so by adding something like this to your boto config file:

[Boto]
ec2_region_name = eu-west-1

Once this has been added to your boto config file, when you call boto.connect_ec2
without any parameters you will get a connection to the eu-west-1 region.

1.7 Enabling Debug Output with boto
Occasionally, things don’t work exactly as you expected. When you are interacting
with remote services via HTTP-based APIs, the best debugging tool you can have is
detailed logs of the actual HTTP requests and responses sent to and received from the
remote services.

boto provides a way to get very detailed logging by using the Python logging module.
Full details of the capabilities of the Python logging module can be found at http://docs
.python.org/library/logging.html, but this example shows a quick way to get full debug
output printed to your interactive console when using boto:

% python
>>> import boto
>>> boto.set_stream_logger('paws')
>>> ec2 = boto.connect_ec2(debug=2)
>>> s3 = boto.connect_s3(debug=2)
>>>

The string passed to set_stream_logger can be anything you want; it will appear in the
header of log entries. Any operations performed with the ec2 or s3 connections from
this point forward will dump full debug logs out to the interactive Python shell.

1.8 Controlling Socket Timeouts in boto
All of the APIs that boto uses to communicate with cloud services are HTTP-based.
That means that under the covers we are communicating over sockets to distributed
services. Sometimes these services can be unresponsive or the communication layer
between our application and the service can be unreliable. To help manage this in a
reasonable way, timeouts are important. They allow our application to detect a problem
with the network or a service and attempt to deal with it, or at least tell the user
about it.

You can explicitly manage socket-level timeouts in boto by adding a section to your
boto config file. The timeout is specified in seconds:

[Boto]
http_socket_timeout = 5

10 | Chapter 1: General Info

http://docs.python.org/library/logging.html
http://docs.python.org/library/logging.html

CHAPTER 2

EC2 Recipes

2.1 Launching an Instance
Problem
One of the first things most people want to do after they get signed up with AWS is to
launch an instance.

Solution
Create the necessary prerequisite resources and then use the run_instances method to
create an instance.

Discussion
If you are launching an instance, most likely you will want to log in to that instance
once it is up and running. In the interest of security, AWS uses passwordless SSH for
instance access. This requires the use of a public/private keypair that is used to control
access to your instance. The public key is installed on the newly launched instance by
EC2 and registered as an authorized key with the SSH software on the instance. Then,
when you log into the instance, you provide the private key and the SSH software is
able to cryptographically compare the public and private keys and determine if the login
attempt should be allowed or not. So, prior to running our first instance, we need to
create an SSH keypair.

In addition to the keypair, we also need to create a security group. Security groups are
a distributed firewall used to control access to your instances. By default, all ports on
your instance will be disabled so no access would be possible. If we want to access the
instance via SSH, we need to create a security group that contains a specific rule that
will enable access to the instance on the specific port we want to use for SSH (default
is 22).

Example 2-1 shows a convenience function that does all of the hard work related to
launching an instance.

11

Example 2-1. Launching an Instance

import os
import time
import boto
import boto.manage.cmdshell

def launch_instance(ami='ami-7341831a',
 instance_type='t1.micro',
 key_name='paws',
 key_extension='.pem',
 key_dir='~/.ssh',
 group_name='paws',
 ssh_port=22,
 cidr='0.0.0.0/0',
 tag='paws',
 user_data=None,
 cmd_shell=True,
 login_user='ec2-user',
 ssh_passwd=None):
 """
 Launch an instance and wait for it to start running.
 Returns a tuple consisting of the Instance object and the CmdShell
 object, if request, or None.

 ami The ID of the Amazon Machine Image that this instance will
 be based on. Default is a 64-bit Amazon Linux EBS image.

 instance_type The type of the instance.

 key_name The name of the SSH Key used for logging into the instance.
 It will be created if it does not exist.

 key_extension The file extension for SSH private key files.

 key_dir The path to the directory containing SSH private keys.
 This is usually ~/.ssh.

 group_name The name of the security group used to control access
 to the instance. It will be created if it does not exist.

 ssh_port The port number you want to use for SSH access (default 22).

 cidr The CIDR block used to limit access to your instance.

 tag A name that will be used to tag the instance so we can
 easily find it later.

 user_data Data that will be passed to the newly started
 instance at launch and will be accessible via
 the metadata service running at http://169.254.169.254.

 cmd_shell If true, a boto CmdShell object will be created and returned.
 This allows programmatic SSH access to the new instance.

 login_user The user name used when SSH'ing into new instance. The

12 | Chapter 2: EC2 Recipes

 default is 'ec2-user'

 ssh_passwd The password for your SSH key if it is encrypted with a
 passphrase.
 """
 cmd = None

 # Create a connection to EC2 service.
 # You can pass credentials in to the connect_ec2 method explicitly
 # or you can use the default credentials in your ~/.boto config file
 # as we are doing here.
 ec2 = boto.connect_ec2()

 # Check to see if specified keypair already exists.
 # If we get an InvalidKeyPair.NotFound error back from EC2,
 # it means that it doesn't exist and we need to create it.
 try:
 key = ec2.get_all_key_pairs(keynames=[key_name])[0]
 except ec2.ResponseError, e:
 if e.code == 'InvalidKeyPair.NotFound':
 print 'Creating keypair: %s' % key_name
 # Create an SSH key to use when logging into instances.
 key = ec2.create_key_pair(key_name)

 # AWS will store the public key but the private key is
 # generated and returned and needs to be stored locally.
 # The save method will also chmod the file to protect
 # your private key.
 key.save(key_dir)
 else:
 raise

 # Check to see if specified security group already exists.
 # If we get an InvalidGroup.NotFound error back from EC2,
 # it means that it doesn't exist and we need to create it.
 try:
 group = ec2.get_all_security_groups(groupnames=[group_name])[0]
 except ec2.ResponseError, e:
 if e.code == 'InvalidGroup.NotFound':
 print 'Creating Security Group: %s' % group_name
 # Create a security group to control access to instance via SSH.
 group = ec2.create_security_group(group_name,
 'A group that allows SSH access')
 else:
 raise

 # Add a rule to the security group to authorize SSH traffic
 # on the specified port.
 try:
 group.authorize('tcp', ssh_port, ssh_port, cidr)
 except ec2.ResponseError, e:
 if e.code == 'InvalidPermission.Duplicate':
 print 'Security Group: %s already authorized' % group_name
 else:
 raise

2.1 Launching an Instance | 13

 # Now start up the instance. The run_instances method
 # has many, many parameters but these are all we need
 # for now.
 reservation = ec2.run_instances(ami,
 key_name=key_name,
 security_groups=[group_name],
 instance_type=instance_type,
 user_data=user_data)

 # Find the actual Instance object inside the Reservation object
 # returned by EC2.

 instance = reservation.instances[0]

 # The instance has been launched but it's not yet up and
 # running. Let's wait for its state to change to 'running'.

 print 'waiting for instance'
 while instance.state != 'running':
 print '.'
 time.sleep(5)
 instance.update()
 print 'done'

 # Let's tag the instance with the specified label so we can
 # identify it later.
 instance.add_tag(tag)

 # The instance is now running, let's try to programmatically
 # SSH to the instance using Paramiko via boto CmdShell.

 if cmd_shell:
 key_path = os.path.join(os.path.expanduser(key_dir),
 key_name+key_extension)
 cmd = boto.manage.cmdshell.sshclient_from_instance(instance,
 key_path,
 user_name=login_user)

 return (instance, cmd)

Example 2-2 shows an example of an interactive Python session that uses the
launch_instance function.

Example 2-2. Using the launch_instance Function

>>> from ec2_launch_instance import launch_instance
>>> launch_instance()
Creating keypair: paws
Security Group: paws already authorized
waiting for instance
.
.
done
SSH Connection refused, will retry in 5 seconds

14 | Chapter 2: EC2 Recipes

(Instance:i-98847ef8, ≤boto.manage.cmdshell.SSHClient object at 0x10141fb90>)
>>> instance, cmdshell = _
>>> cmdshell.shell()

 __| __|_)
 _| (/ Amazon Linux AMI
 ___|___|___|

See /usr/share/doc/system-release/ for latest release notes.
No packages needed for security; 1 packages available
[ec2-user@domU-12-31-39-00-E4-53 ~]$ ls
[ec2-user@domU-12-31-39-00-E4-53 ~]$ pwd
/home/ec2-user
[ec2-user@domU-12-31-39-00-E4-53 ~]$ df
Filesystem 1K-blocks Used Available Use% Mounted on
/dev/xvda1 8256952 918228 7254864 12% /
tmpfs 305624 0 305624 0% /dev/shm
[ec2-user@domU-12-31-39-00-E4-53 ~]$
[ec2-user@domU-12-31-39-00-E4-53 ~]$ logout

*** EOF
>>>

Launch an instance with all of the default choices.

The launch_instance function returns a tuple consisting of the Instance object and
the CmdShell object. This line uses the special Python shell symbol _, which repre-
sents the last returned value to unpack the two values in the tuple into their own
variables.

The CmdShell object represents an SSH connection to our new instance. Here, we
use the shell method to start up an interactive command shell to our new instance.

Typing exit into the SSH session will close the interactive SSH session and return
us to our Python prompt. You could now call instance.terminate() to get rid of the
instance, or you can keep it around for more experimentation.

2.2 Keeping Track of Instances with Tags
Problem
As you create more instances, it becomes difficult to keep track of them.

Solution
Use the create_tag method and variants to associate meaningful tags with your EC2
resources.

2.2 Keeping Track of Instances with Tags | 15

Discussion
In Recipe 2.1 we created a single instance, and when there is only one, it’s not that hard
to keep track of it. As soon as you begin to create additional instances, however, things
get more complicated—and by the time you have dozens or even hundreds of instances
running at the same time, it’s almost impossible to keep track of them all. Trying to
remember what instance i-28a64341 is doing is hard, but if you can associate meaningful
names with the instances, things become much more manageable.

The create_tags method gives us a way to associate keys or key/value pairs with EC2
resources. We can then use those tags to help filter results and find the resources we
are looking for quickly and easily.

Example 2-3. Keeping Track of Instances with Tags

import boto

ec2 = boto.connect_ec2()

Get a list of all current instances. We will assume that the only
instance running is the one we started in the previous recipe.

reservations = ec2.get_all_instances()

Despite the name, get_all_instances does not return Instance
objects directly. What it returns are Reservation objects
as returned by run_instances. This is a confusing aspect of
the EC2 API that we have decided to be consistent with in boto.
The following incantation will return the actual Instance
object embedded within the Reservation. We are assuming we
have a single Reservation which launched a single Instance.

instance = reservations[0].instances[0]

We could call create_tags directly here but boto provides
some nice convenience methods to make it even easier.
We are going to store a single tag on this instance.

instance.add_tag('paws')

We can now ask for all instances that have the tag name "paws"
and get our instance back again.

reservations = ec2.get_all_instances(filters={'paws' : None})
new_instance = reservations[0].instances[0]
assert new_instance.id == instance.id

16 | Chapter 2: EC2 Recipes

2.3 Accessing the Console Log
Problem
A recently launched instance is not behaving as you expected.

Solution
Use the get_console_output method to view the console log of the instance to trouble-
shoot the problem.

Discussion
If you launch a new instance and are unable to log in, or if the instance doesn’t seem
to be performing as expected, one critical source of debugging information is the system
log, the information that is printed out to the console as you are booting the machine.
If the machine in question is sitting on your desktop, it’s easy to get access to this, but
if it’s a virtualized machine somewhere in the cloud, additional tools are required.

The get_console_output method gives us a way to get at that console output via the
EC2 API.

Example 2-4. Accessing the Console Output

import boto

ec2 = boto.connect_ec2()

Let's assume the instance we are interested in has already been started
in the previous examples and is tagged with "paws". This little
incantation will retrieve it for us.

instance = ec2.get_all_instances(filters={'paws' : None})[0].instances[0]
co = instance.get_console_output()
print co.output

2.4 Uploading Your Own SSH Keypair
Problem
You have an existing SSH keypair and you would prefer to use that for accessing in-
stances rather than create a new keypair.

Solution
Use the import_key_pair method to upload the public key portion of your existing key
to AWS.

2.4 Uploading Your Own SSH Keypair | 17

Discussion
As we demonstrated in Recipe 2.1, it is easy to create a new SSH keypair for use when
logging into your instances. However, you probably already have a number of SSH
keypairs, and you may prefer to use one of those.

The import_key_pair method gives you a way to upload the public part of your keypair
to EC2. When you do that, you assign a name to the keypair, and after that you can
use it exactly like the keypairs you create with the create_key_pair method.

If you have an existing PEM-format keypair file, as generated by EC2 and other tools,
you first need to extract the public key portion from the keypair file. You can use the
ssh-keygen command that is part of the OpenSSL package to do this. Assume that your
PEM files are located in ~/.ssh/:

 % cd ~/.ssh
 % ssh-keygen -e -f mykey.pem > mykey.pub

Example 2-5. Upload SSH Keypair

import boto

ec2 = boto.connect_ec2()

Read the public key material from the file
fp = open('mykey.pub')
material = fp.read()
fp.close()
key_pair = ec2.import_key_pair('mykey', material)

2.5 Synchronizing SSH Keypairs Across EC2 Regions
Problem
You have created a keypair in one EC2 region and you would like to use the same
keypair in other regions.

Solution
Use the import_key_pair method to upload the public key portion of your existing key
to each region.

Discussion
EC2 regions are completely independent, and resources like keypairs created in one
region are not accessible in other regions. If you want to have the same keypair available
in multiple regions, you can use a technique similar to that used in Recipe 2.4 to copy
the same keypair across multiple EC2 regions, as shown in Example 2-6. Make sure
you have generated the public key file from your .pem file first.

18 | Chapter 2: EC2 Recipes

Example 2-6. Upload SSH Keypair

import boto.ec2

def sync_keypairs(keypair_name, public_key_file):
 """
 Synchronize SSH keypairs across all EC2 regions.

 keypair_name The name of the keypair.
 public_key_file The path to the file containing the
 public key portion of the keypair.
 """
 fp = open(public_key_file)
 material = fp.read()
 fp.close()

 for region in boto.ec2.regions():
 ec2 = region.connect()
 # Try to list the keypair. If it doesn't exist
 # in this region, then import it.
 try:
 key = ec2.get_all_key_pairs(keynames=[keypair_name])[0]
 print 'Keypair(%s) already exists in %s' % (keypair_name,
 region.name)
 except ec2.ResponseError, e:
 if e.code == 'InvalidKeyPair.NotFound':
 print 'Importing keypair(%s) to %s' % (keypair_name,
 region.name)
 ec2.import_key_pair(keypair_name, material)

2.6 Associate an Elastic IP Address with an Instance
Problem
You would like to have a stable IP address to use to refer to an instance rather than the
dynamically generated address used by default.

Solution
Use the allocate_address method to get an Elastic IP address and the asso
ciate_address method to pair it with your instance.

Discussion
Each time you start up an instance, a new IP address is allocated to that instance. This
is fine if you are just experimenting with AWS or if the instance works behind the scenes
and never needs to be accessed by end users or other systems. But if the instance is a
front-end web server, for example, this can be an issue, because if that instance fails for
some reason or needs to be replaced with an instance with updated software, you will
need to update your DNS records with the new IP address. Since DNS changes can take

2.6 Associate an Elastic IP Address with an Instance | 19

time to propagate and can be incorrectly cached by clients, this could cause a disruption
to your service.

In AWS, the solution to this problem is the rather confusingly named Elastic IP Address.
At least it’s confusing to me, because it’s really what most people would call a static IP
address, and that doesn’t seem all that elastic to me. You can easily associate it with
any instance you want, however, so perhaps that’s where the elasticity comes in. Using
Elastic IP Addresses is a two-step process. First you have to allocate an IP address. Then,
you associate that IP address with an instance. There is no charge for an Elastic IP
Address that is being used, but if you allocate one and don’t have it associated with an
instance, there is a small, per-hour charge to discourage people from hoarding those
valuable IP addresses.

Example 2-7. Associate Elastic IP Address with an Instance

import boto

ec2 = boto.connect_ec2()

Let's assume the instance we are interested in has already been started
in the previous examples and is tagged with "paws". This little
incantation will retrieve it for us.

instance = ec2.get_all_instances(filters={'paws' : None})[0].instances[0]

Allocate an Elastic IP Address. This will be associated with your
account until you explicitly release it.

address = ec2.allocate_address()

Associate our new Elastic IP Address with our instance.

ec2.associate_address(instance.id, address.public_ip)

Alternatively, you could do this.

instance.use_ip(address)

2.7 Attach a Persistent EBS Volume to an Instance
Problem
You are storing data on an EC2 instance and you would like that data to persist even
if the instance fails.

Solution
Use the create_volume method and other EBS-related methods to create a volume and
attach it to an existing instance.

20 | Chapter 2: EC2 Recipes

Discussion
All EC2 instances have a root volume associated with them. This is where the operating
system is installed. The size of this root volume depends on how the image was bundled
and whether the corresponding AMI is S3-backed or EBS-backed.

In addition, all EC2 instance types except the t1.micro have dedicated instance storage.
The number of volumes and total amount of instance storage varies depending on the
instance type, but all instance storage has one property in common: it is ephemeral.
When you terminate the instance (or when it fails for some reason), all of the instance
storage goes away and anything you have stored there will be lost.

To provide persistent storage (that is, storage that exists independent of an instance),
EC2 provides Elastic Block Storage (EBS). EBS allows you to create volumes of any size
(from 1 GB to 1 TB) and attach the volumes to any EC2 instance. If that instance fails
for any reason, the volume can be reattached to a replacement instance and the data
will then be available to that new instance.

EBS volumes have about the same reliability you would expect from a RAID device, so
while failures are not common, they can happen. We will discuss ways to back up your
EBS volume in Recipe 2.8.

Example 2-8. Attach a Volume

import boto
import time

def create_and_attach_volume(instance, volume_size, device_name):
 """
 Create a new EBS volume and attach it to the instance.

 instance The instance object representing the instance to which
 the volume will be attached.

 volume_size The size (in GB) of the new volume.

 device_name The device name to which the new volume will be
 referred to on the instance.
 """
 ec2 = instance.connection
 # Determine the Availability Zone of the instance
 azone = instance.placement

 volume = ec2.create_volume(volume_size, azone)

 # Wait for the volume to be created.
 while volume.status != 'available':
 time.sleep(5)
 volume.update()

 volume.attach(instance.id, device_name)
 return volume

2.7 Attach a Persistent EBS Volume to an Instance | 21

2.8 Back Up Your EBS Volumes
Problem
You have vital information stored on EBS volumes and you want to make sure that the
data is safe.

Solution
Use the create_snapshot method and other EBS-related methods to back up your EBS
volume and manage the backups.

Discussion
In Recipe 2.7 we discussed the reliability of EBS volumes, but no matter how reliable
they may be, you still want to make sure you have a good backup strategy. That’s where
snapshots come in. A snapshot allows you to make a copy of your EBS volume at an
instant in time and save that data to S3, with the whole 11 nines of durability that it
provides.

Example 2-9. Snapshot an EBS Volume

>>> import boto
>>> ec2 = boto.connect_ec2()
>>> reservations = ec2.get_all_instances(filters={'paws' : None})
>>> instance = reservations[0].instances[0]
>>> volumes = ec2.get_all_volumes(filters={'attachment.instance-id' : instance.id})
>>> volumes
[Volume:vol-990e5af3, Volume:vol-bdf7a2d7]
>>> for v in volumes:
....: print v.attach_data.device
....:
/dev/sdh
/dev/sda1
>>> snaps = [v.create_snapshot() for v in volumes]
>>> snaps
[Snapshot:snap-42a60b21, Snapshot:snap-40a60b23]
>>>

Find the instance whose volumes we want to snapshot. This assumes it is the instance
we started in an earlier recipe and is tagged with the label paws.

Even though we have attached only one EBS volume to this instance, our query
returns two volumes. That’s because this is an EBS-backed AMI and one of those
volumes represents the root volume of the instance.

We can loop through each of the volumes to print out the device name associated
with each to determine which is the root volume.

Use a list comprehension in Python to create a list of snapshots, one for each volume.

22 | Chapter 2: EC2 Recipes

The snapshot command makes a copy of the state of the volume at an
instant in time. It’s up to you to make sure that it’s the right instant in
time. For example, if you have a database that is writing data to the
volume, you may need to temporarily halt the database so you get con-
sistent information on the volume at the time you perform the snapshot.
Some people format their volumes with xfs file system and then freeze
the file system before running the snapshot and unfreeze immediately
after. The details of all of this are very application-specific, but it’s im-
portant to validate the integrity of your backups by restoring some
snapshots (as shown in Recipe 2.9) and testing them.

2.9 Restore a Volume from a Snapshot
Problem
An EBS volume fails and you need to recover from a snapshot.

Solution
Use the create_volume method to create a new EBS volume from an existing snapshot.

Discussion
If you have been regularly creating snapshots of your EBS volumes, you will be well-
prepared for the failure that will inevitably occur. And failure really is inevitable. Plan
for it. That’s not a criticism of cloud computing; it’s just a fact of life. The good news
is that the APIs that are available in cloud computing environments like AWS and
Eucalyptus make it possible to automate the recovery of anticipated failures.

This recipe assumes that you have already identified the EBS volume that needs to be
recovered and shows the simple steps required to create a new volume based on the
latest snapshot of the failing volume.

Did you know that frequent snapshots will actually reduce the chances
that your EBS volume will fail? It’s true! The chance of failure increases
as the amount of data since your last snapshot grows. Taking frequent
snapshots can keep the amount of changed data smaller and increase
the overall durability of your EBS volume.

Example 2-10. Restoring an EBS Volume

>>> import boto
>>> ec2 = boto.connect_ec2()
>>> volume_id = 'vol-bdf7a2d7' # The failing EBS volume
>>> bad_volume = ec2.get_all_volumes([volume_id])[0]
>>> snaps = bad_volume.snapshots()
>>> snaps.sort(key=lambda snap: snap.start_time)

2.9 Restore a Volume from a Snapshot | 23

>>> latest_snap = snaps[-1]
>>> new_volume = ec2.create_volume(bad_volume.size, bad_volume.zone, latest_snap)

The snapshots method returns a list of snapshots for the volume.

This example assumes you want the latest snapshot, so we sort the list by the
start_time attribute.

Once sorted, the latest snapshot should be the last one in the list.

We now create a new volume, the same size as the bad volume and in the same
availability zone as the bad volume, and based on the latest snapshot.

2.10 Clone an Existing Instance
Problem
You have a running instance, perhaps with EBS volumes attached, and you want to
make a clone of that instance.

Solution
Use the get_userdata and clone_instance functions in this recipe to create a copy of an
existing instance, including copies of all attached EBS volumes based on the latest
available snapshots.

Discussion
For this recipe, let’s assume that you have a running instance. It could have one or more
EBS volumes attached to it. Let’s also assume that, for some reason, you want to create
another instance that is an exact copy of the currently running instance. You may want
to do this because the running instance appears to be having issues or it may be that
you want to debug an issue without disturbing your production instance.

Whatever the reason may be, this recipe defines a function to help us clone a running
instance. To accomplish this, we need to gather some information:

• We need to know the AMI, keypair, security groups, availability zone, instance
type, etc. of the current instance. We can get all of that information easily from the
boto Instance object that represents the current instance.

• We need to make copies of all EBS volumes that are attached to the instance. For
this recipe, we will assume that the latest snapshot of the volumes represents the
state we want to recreate.

• We need the user_data that was passed to the instance when it was started. This
data could include data and/or scripts that are run when the instance is launched
as shown in Recipe 2.15.

24 | Chapter 2: EC2 Recipes

Example 2-11. Clone a Running Instance

import boto
from boto.ec2.blockdevicemapping import BlockDeviceMapping, BlockDeviceType
import os
import base64

def clone_instance(instance):
 """
 Make an clone of an existing Instance object.

 instance The Instance object to clone.
 """
 new_bdm = None
 ec2 = instance.connection

 if instance.block_device_mapping:
 root_device_name = instance.get_attribute('rootDeviceName')['rootDeviceName']
 user_data = instance.get_attribute('userData')['userData']
 # user_data comes back base64 encoded. Need to decode it so it
 # can get re-encoded by run_instance !
 user_data = base64.b64decode(user_data)
 new_bdm = BlockDeviceMapping()
 for dev in instance.block_device_mapping:
 # if this entry is about the root device, skip it
 if dev != root_device_name:
 bdt = instance.block_device_mapping[dev]
 if bdt.volume_id:
 volume = ec2.get_all_volumes([bdt.volume_id])[0]
 snaps = volume.snapshots()
 if len(snaps) == 0:
 print 'No snapshots available for %s' % volume.id
 else:
 # sort the list of snapshots, newest is at the end now
 snaps.sort(key=lambda snap: snap.start_time)
 latest_snap = snaps[-1]
 new_bdt = BlockDeviceType()
 new_bdt.snapshot_id = latest_snap.id
 new_bdm[dev] = new_bdt

 return ec2.run_instances(instance.image_id,
 key_name=instance.key_name,
 security_groups=[g.name for g in instance.groups],
 user_data=user_data,
 instance_type=instance.instance_type,
 kernel_id=instance.kernel,
 ramdisk_id=instance.ramdisk,
 monitoring_enabled=instance.monitored,
 placement=instance.placement,
 block_device_map=new_bdm).instances[0]

2.10 Clone an Existing Instance | 25

2.11 Find All Running EC2 Instances
Problem
There are now multiple EC2 regions spread across the world. In addition, you may
have multiple accounts that you manage (for dev, test, production, etc.). Given that, it
is easy to lose track of instances. And even though you may have forgotten about them,
AWS has not, and you will continue to incur charges for these forgotten resources.

Solution
Use the EC2 API to find all running instances, for one or more accounts across all
regions.

Discussion
Fortunately, the EC2 API makes it relatively easy to find all running instances, for all
accounts, across all regions. Example 2-12 gathers all of that information together and
prints a report, and also returns a data structure that can be used to terminate unused
instances.

Example 2-12. Find All Running Instances

import boto
import boto.ec2

def print_running_instances(running_instances):
 print 'The following running instances were found'
 for account_name in running_instances:
 print '\tAccount: %s' % account_name
 d = running_instances[account_name]
 for region_name in d:
 print '\t\tRegion: %s' % region_name
 for instance in d[region_name]:
 print '\t\t\tAn %s instance: %s' % (instance.instance_type,
 instance.id)
 print '\t\t\t\tTags=%s' % instance.tags

def find_all_running_instances(accounts=None, quiet=False):
 """
 Will find all running instances across all EC2 regions for all of the
 accounts supplied.

 :type accounts: dict
 :param accounts: A dictionary contain account information. The key is
 a string identifying the account (e.g. "dev") and the
 value is a tuple or list containing the access key
 and secret key, in that order.
 If this value is None, the credentials in the boto
 config will be used.
 """

26 | Chapter 2: EC2 Recipes

 if not accounts:
 creds = (boto.config.get('Credentials', 'aws_access_key_id'),
 boto.config.get('Credentials', 'aws_secret_access_key'))
 accounts = {'main' : creds}
 running_instances = {}
 for account_name in accounts:
 running_instances[account_name] = {}
 ak, sk = accounts[account_name]
 for region in boto.ec2.regions():
 conn = region.connect(aws_access_key_id=ak,
 aws_secret_access_key=sk)
 filters={'instance-state-name' : 'running'}
 instances = []
 reservations = conn.get_all_instances(filters=filters)
 for r in reservations:
 instances += r.instances
 if instances:
 running_instances[account_name][region.name] = instances
 if not quiet:
 print_running_instances(running_instances)
 return running_instances

if __name__ == '__main__':
 find_all_running_instances()

Here’s an example of the script in use and the output produced:

>>> from ec2_find_all_running_instances import *
>>> find_all_running_instances()
The following running instances were found
 Account: main
 Region: us-east-1
 An t1.micro instance: i-9221f9fd
 Tags={u'midoc': ''}
 An t1.micro instance: i-b62057d6
 Tags={u'paws': ''}
{'main': {u'us-east-1': [Instance:i-9221f9fd, Instance:i-b62057d6]}}

2.12 Monitoring the Performance of Your Instance
Problem
Now that your instance is up and running, you want to monitor its performance and
load.

Solution
Use CloudWatch to get detailed data about your instance.

2.12 Monitoring the Performance of Your Instance | 27

Discussion
Monitoring the health and performance of your instances is an important part of op-
erating any website or service. The CloudWatch service provides the ability to get de-
tailed monitoring data about your EC2 instances and other AWS resources.

Example 2-13 illustrates how to enable monitoring on an EC2 instance and then retrieve
various types of monitoring data for that instance.

First, we will find our existing instance and enable CloudWatch monitoring. A free tier
of CloudWatch monitoring includes a limited set of metrics measured on a five-minute
interval. There is an additional hourly charge for monitoring your instance if you want
access to more metrics or finer-grained measurements. See http://aws.amazon.com/
cloudwatch/ for details.

Example 2-13. Enable Monitoring Your Instance

>>> import boto
>>> ec2 = boto.connect_ec2()
>>> reservations = ec2.get_all_instances(filters={'paws' : None})
>>> instance = reservations[0].instances[0]
>>> instance.monitor()

Find the instance we want to start monitoring. This example assumes it is the in-
stance we started in an earlier recipe and is tagged with the label paws.

Example 2-14 shows how to query CloudWatch for data about your instance. It can
take a few minutes for CloudWatch to actually start collecting data after you enable
monitoring, so it’s best to wait a bit before trying this part.

Example 2-14. Monitor Your Instance

>>> cw = boto.connect_cloudwatch()
>>> metrics = cw.list_metrics()
>>> my_metrics = []
>>> for metric in metrics:
... if 'InstanceId' in metric.dimensions:
... if instance.id in metric.dimensions['InstanceId']:
... my_metrics.append(metric)
...
>>> my_metrics
[Metric:CPUUtilization(InstanceId,i-76894c16), Metric:DiskReadOps(InstanceId,i-76894c16),
Metric:NetworkIn(InstanceId,i-76894c16), Metric:DiskWriteOps(InstanceId,i-76894c16),
Metric:DiskWriteBytes(InstanceId,i-76894c16), Metric:DiskReadBytes(InstanceId,i-76894c16),
Metric:NetworkOut(InstanceId,i-76894c16)]

28 | Chapter 2: EC2 Recipes

http://aws.amazon.com/cloudwatch/
http://aws.amazon.com/cloudwatch/

>>> import boto.utils
>>> start_time = boto.utils.parse_ts(instance.launch_time)
>>> start_time
datetime.datetime(2011, 9, 6, 15, 3, 47)
>>> import datetime
>>> end_time = datetime.datetime.utcnow()
>>> end_time
datetime.datetime(2011, 9, 6, 16, 9, 25, 61216)
>>> metric = my_metrics[0]
>>> metric
Metric:CPUUtilization(InstanceId,i-76894c16)
>>> metric.Units
['Seconds', 'Microseconds', 'Milliseconds', 'Bytes', 'Kilobytes', 'Megabytes',
'Gigabytes', 'Terabytes', 'Bits', 'Kilobits', 'Megabits', 'Gigabits', 'Terabits',
'Percent', 'Count', 'Bytes/Second', 'Kilobytes/Second', 'Megabytes/Second',
'Gigabytes/Second', 'Terabytes/Second', 'Bits/Second', 'Kilobits/Second',
'Megabits/Second', 'Gigabits/Second', 'Terabits/Second', 'Count/Second', None]
>>> metric.Statistics
['Minimum', 'Maximum', 'Sum', 'Average', 'SampleCount']
>>> cpu_samples = metric.query(start_time, end_time, 'Average')
>>> cpu_samples[0]
{u'Timestamp': datetime.datetime(2011, 9, 6, 15, 3), u'Average': 0.38999999999999996,
u'Unit': u'Percent'}
>>> len(cpu_samples)
61
>>> my_metrics
[Metric:CPUUtilization(InstanceId,i-76894c16), Metric:DiskReadOps(InstanceId,i-76894c16),
Metric:NetworkIn(InstanceId,i-76894c16), Metric:DiskWriteOps(InstanceId,i-76894c16),
Metric:DiskWriteBytes(InstanceId,i-76894c16), Metric:DiskReadBytes(InstanceId,i-76894c16),
Metric:NetworkOut(InstanceId,i-76894c16)]
>>> disk_read_metric = my_metrics[-2]
>>> disk_read_metric
Metric:DiskReadBytes(InstanceId,i-76894c16)
>>> disk_samples = disk_read_metric.query(start_time, end_time, 'Maximum', 'Bytes')
>>> len(disk_samples)
61
>>> disk_samples[0]
{u'Timestamp': datetime.datetime(2011, 9, 6, 15, 13), u'Average': 0.0, u'Unit': u'Bytes'}
>>> network_out_metric = my_metrics[-1]
>>> metric
Metric:NetworkOut(InstanceId,i-76894c16)
>>> net_samples = metric.query(start_time, end_time, 'Maximum', period=120)
>>> len(net_samples)
31
>>> net_samples[0]

2.12 Monitoring the Performance of Your Instance | 29

{u'Timestamp': datetime.datetime(2011, 9, 7, 7, 28), u'Maximum': 28.0, u'Unit': u'Bytes'}
>>>

This will return a list of all of the available CloudWatch metrics. Each will be rep-
resented by a Metric object. The contents of this list will vary for each user, depend-
ing on the number of instances you have running and the number of other moni-
torable resources (SQS queues, SNS topics, etc.) that the account has created.

This code will loop through all available metrics and create a list, called my_met
rics, consisting of only the metrics that are relevant to this particular EC2 instance.

In order to query CloudWatch for data, we need to specify the timeframe that we
are interested in by providing a start_time and an end_time. For this example, we
are going to use the launch time of the instance as our start time and the current
time as our end time. The Instance object has a launch_time attribute, but it is a
string representation of the timestamp, and we need a Python datetime object. We
can use the boto utility function parse_ts to convert the string to a datetime object.

The utcnow function will return a datetime object representing the current time in
UTC.

Data returned by CloudWatch always has an associated Unit that represents the unit
of measure. The Units attribute of the Metric class is a list of all available units. For
example, if you are asking for data about network output, you could choose between
Bytes/Second, Kilobytes/Second, Megabytes/Second, etc.

You can also choose different Statistics when you query CloudWatch for data.
Statistics defines how the data is aggregated over time. You may want, for example,
the Average value or the Minimum or Maximum.

For more information about Units and Statistics in CloudWatch,
check out http://docs.amazonwebservices.com/AmazonCloudWatch/
latest/DeveloperGuide/cloudwatch_concepts.html.

First, we will select the metric for CPU Utilization. We locate the Metric object in
our list of metrics and then use the query method of the object to issue the query to
CloudWatch. This returns a list of Python dictionary objects representing the sam-
ples from CloudWatch. Each sample consists of a timestamp, a unit of measurement,
and the actual sample value.

Here, we query the DiskReadBytes metric. Rather than the average, we are asking for
the maximum value observed within the period.

Finally, we query the NetworkOut metric, asking for the maximum value within each
sample period. In addition, rather than relying on the default granularity of 60 sec-
onds (the minimum), we will instead specify a period of 120 seconds. The period
value must be a multiple of 60.

30 | Chapter 2: EC2 Recipes

http://docs.amazonwebservices.com/AmazonCloudWatch/latest/DeveloperGuide/cloudwatch_concepts.html
http://docs.amazonwebservices.com/AmazonCloudWatch/latest/DeveloperGuide/cloudwatch_concepts.html

2.13 Getting Notifications
Problem
You have monitoring enabled on your EC2 instance. Now you would like to get notified
when certain conditions arise.

Solution
Use CloudWatch Alarms to set up notification.

Discussion
All of the recipes in this book are focused on the EC2 and S3 services. However, for
this particular recipe we will dip our toe into one other Amazon Web Service, the Simple
Notification Service. This service provides a very simple yet robust publish and sub-
scribe service, which does a great job as a scalable method of implementing commu-
nication between processes or services. We won’t be able to cover the details of SNS
in detail, but this example will show you how to leverage SNS to quickly enable email
notification of CloudWatch events using alarms.

The following commands assume that you have signed up for SNS with your AWS
account. The first step in enabling CloudWatch alarms is to create an SNS topic to
which events can be published. People or systems that are interested in these events
can then subscribe to the topic. When you subscribe, you can select a number of dif-
ferent notification protocols. For example, you could select http, which would cause
a JSON payload containing the message contents to be POSTed via HTTP to the endpoint
you provide. Or you can subscribe via SQS (Simple Queue Service), which will place a
message in an SQS queue. For this example, we will use the email protocol to send an
email message to the specified email address each time an alarm is fired.

Example 2-15. Configuring SNS for CloudWatch Alarms

>>> import boto
>>> sns = boto.connect_sns()
>>> sns.create_topic('paws_cloudwatch')
{u'CreateTopicResponse': {u'ResponseMetadata': {u'RequestId': u'73721b87-
da0e-11e0-99a4-59769425d805'},
 u'CreateTopicResult': {u'TopicArn': u'arn:aws:sns:us-
east-1:084307701560:paws_cloudwatch'}}}
>>> topic_arn = _['CreateTopicResponse']['CreateTopicResult']['TopicArn']
>>> topic_arn
u'arn:aws:sns:us-east-1:084307701560:paws_cloudwatch'
>>> sns.subscribe(topic_arn, 'email', 'mitch@garnaat.org')
{u'SubscribeResponse': {u'SubscribeResult': {u'SubscriptionArn': u'pending confirmation'},
 u'ResponseMetadata': {u'RequestId': u'd4a846fd-da0e-11e0-bcf1-37db33647dea'}}}
>>>

2.13 Getting Notifications | 31

http://aws.amazon.com/sns
http://aws.amazon.com/sns
http://en.wikipedia.org/wiki/Publish/subscribe
http://en.wikipedia.org/wiki/Publish/subscribe
http://docs.amazonwebservices.com/AmazonCloudWatch/latest/DeveloperGuide/cloudwatch_concepts.html#CloudWatchAlarms

Make note of the topic_arn, as that identifier will be needed later, when we create the
Alarm object.

Shortly after typing the commands above, you should receive an email message from
AWS at the address subscribed. This email will contain a link that you need to click on
to complete the subscription process. If you click on it, you should see a page like
Figure 2-1 in your browser.

Figure 2-1. SNS Confirmation Page

With that complete, we have successfully established the SNS topic that can be used
for publishing CloudWatch alarms, and we have also subscribed to that topic so we
will receive an email message each time an alarm is published to the topic. The next
step is to configure the alarm in CloudWatch.

Example 2-16. Creating a CloudWatch Alarm

>>> import boto
>>> cw = boto.connect_cloudwatch()
>>> my_metrics = cw.list_metrics(dimensions={'InstanceId':'i-76894c16'})
>>> my_metrics
[Metric:DiskReadOps, Metric:NetworkOut, Metric:NetworkIn, Metric:DiskReadBytes,
Metric:CPUUtilization, Metric:DiskWriteBytes, Metric:DiskWriteOps]
>>> metric = my_metrics[4]
>>> metric
Metric:CPUUtilization
>>> alarm = metric.create_alarm(name='CPUAlarm', comparison='>', threshold=80.0, period=60,
evaluation_periods=2, statistic='Average',
alarm_actions=['arn:aws:sns:us-east-1:084307701560:paws_cloudwatch'],
ok_actions=['arn:aws:sns:us-east-1:084307701560:paws_cloudwatch'])
>>> alarm
MetricAlarm:CPUAlarm[CPUUtilization(Average) GreaterThanThreshold 80.0]
>>> alarm.set_state('ALARM', 'Testing my alarm', '100')
True
>>> alarm.describe_history()
[AlarmHistory:CPUAlarm[Successfully executed action arn:aws:sns:us-

32 | Chapter 2: EC2 Recipes

east-1:084307701560:paws_cloudwatch at 2011-09-20 14:32:14.355000],
AlarmHistory:CPUAlarm[Alarm updated from ALARM to OK at 2011-09-20 14:32:14.354000],
AlarmHistory:CPUAlarm[Successfully executed action arn:aws:sns:us-
east-1:084307701560:paws_cloudwatch at 2011-09-20 14:32:13.562000],
AlarmHistory:CPUAlarm[Alarm updated from OK to ALARM at 2011-09-20 14:32:13.561000],
AlarmHistory:CPUAlarm[Successfully executed action arn:aws:sns:us-
east-1:084307701560:paws_cloudwatch at 2011-09-20 14:27:31.440000],
AlarmHistory:CPUAlarm[Alarm updated from INSUFFICIENT_DATA to OK at 2011-09-20
14:27:31.439000],
AlarmHistory:CPUAlarm[Alarm "CPUAlarm" created at 2011-09-20 14:27:30.815000]]
>>>

In the example above, after creating my alarm and associating it with my metric in
CloudWatch, I then simulated a change in state with the call to set_alarm_state. This
call gives you a handy way to test out your alarm and your notification mechanism so
you have confidence that when a real alarm state is encountered, you will know about
it. If everything is working properly, you should receive an email that looks something
like this at the account that was subscribed to the SNS topic:

From: AWS Notifications <no-reply@sns.amazonaws.com>
Date: September 20, 2011 10:32:13 AM EDT
To: "mitch@garnaat.org" <mitch@garnaat.org>
Subject: [ALARM] Alarm "CPUAlarm" in US - N. Virginia is now in state ALARM

You are receiving this email because your Amazon CloudWatch Alarm "CPUAlarm" in the US
- N. Virginia region has entered the ALARM state, because "Testing my alarm" at
"Tuesday 20 September, 2011 14:32:13 UTC".

View this alarm in the AWS Management Console:
https://console.aws.amazon.com/cloudwatch/home?region=us-
east-1#s=Alarms&alarm=CPUAlarm

Alarm Details:
- Name: CPUAlarm
- Description: High Average CPU Usage Alarm
- State Change: OK -> ALARM
- Reason for State Change: Testing my alarm
- Timestamp: Tuesday 20 September, 2011 14:32:13 UTC

Threshold:
- The alarm is in the ALARM state when the metric is GreaterThanThreshold 75.0 for 60
seconds.

Monitored Metric:
- MetricNamespace: AWS/EC2
- MetricName: CPUUtilization
- Dimensions: [InstanceId = i-0ef5756e]
- Period: 60 seconds
- Statistic: Average
- Unit: Percent

2.13 Getting Notifications | 33

State Change Actions:
- OK: [arn:aws:sns:us-east-1:084307701560:paws_cloudwatch]
- ALARM: [arn:aws:sns:us-east-1:084307701560:paws_cloudwatch]
- INSUFFICIENT_DATA: [arn:aws:sns:us-east-1:084307701560:paws_cloudwatch]

--

There. That was easy, wasn’t it? Okay, it wasn’t really all that easy. There are a lot of
steps and many opportunities to goof things up, but at least that gives you the nuts and
bolts of how to get this very sophisticated plumbing installed in your environment.
There will be times when you need to work at that nuts and bolts level, but to help
people get started with alarms, here’s a high-level Python function that makes it much
easier to get basic email notifications working.

Example 2-17. Easy Email Notifications

import os
import boto

def easy_alarm(instance_id,
 alarm_name,
 email_addresses,
 metric_name,
 comparison,
 threshold,
 period,
 eval_periods,
 statistics):
 """
 Create a CloudWatch alarm for a given instance. You can choose
 the metric and dimension you want to associate with the alarm
 and you can provide a list of email addresses that will be
 notified when the alarm fires.

 instance_id The unique identifier of the instance you wish to
 monitoring.

 alarm_name A short but meaningful name for your alarm.

 email_addresses A list of email addresses that you want to
 have notified when the alarm fires.

 metric_name The name of the Metric you want to be notified
 about. Valid values are:
 DiskReadBytes|DiskWriteBytes|
 DiskReadOps|DiskWriteOps|
 NetworkIn|NetworkOut|
 CPUUtilization

 comparison The comparison operator. Valid values are:
 >= | > | < | <=

 threshold The threshold value that the metric will
 be compared against.

34 | Chapter 2: EC2 Recipes

 period The granularity of the returned data.
 Minimum value is 60 (seconds) and valid values
 must be multiples of 60.

 eval_periods The number of periods over which the alarm
 must be measured before triggering notification.

 statistics The statistic to apply. Valid values are:
 SampleCount | Average | Sum | Minimum | Maximum

 """
 # Create a connection to the required services
 ec2 = boto.connect_ec2()
 sns = boto.connect_sns()
 cw = boto.connect_cloudwatch()

 # Make sure the instance in question exists and
 # is being monitored with CloudWatch.
 rs = ec2.get_all_instances(filters={'instance-id', instance_id})
 if len(rs) != 1:
 raise ValueError('Unable to find instance: %s' % instance_id)

 instance = rs[0].instances[0]
 instance.monitor()

 # Create the SNS Topic
 topic_name = 'CWAlarm-%s' % alarm_name
 print 'Creating SNS topic: %s' % topic_name
 response = sns.create_topic(topic_name)
 topic_arn = response['CreateTopicResponse']['CreateTopicResult']['TopicArn']
 print 'Topic ARN: %s' % topic_arn

 # Subscribe the email addresses to SNS Topic
 for addr in email_addresses:
 print 'Subscribing %s to Topic %s' % (addr, topic_arn)
 sns.subscribe(topic_arn, 'email', addr)

 # Now find the Metric we want to be notified about
 metric = cw.list_metrics(dimensions={'InstanceId':instance_id},
 metric_name=metric_name)[0]
 print 'Found: %s' % metric

 # Now create Alarm for the metric
 print 'Creating alarm'
 alarm = metric.create_alarm(name=alarm_name, comparison=comparison,
 threshold=threshold, period=period,
 evaluationn_periods=eval_periods,
 statistics=statistics,
 alarm_actions=[topic_arn],
 ok_actions=[topic_arn])

2.13 Getting Notifications | 35

2.14 Storing Custom Data in CloudWatch
Problem
You have your own custom metrics that you would like to be able to monitor.

Solution
Use CloudWatch Custom Metrics to publish your data to CloudWatch.

Discussion
CloudWatch provides a wide-range of standard metrics that can be monitored or in-
corporated into alarms. However, many applications have custom data that is impor-
tant to monitor, such as query times from a database or total disk usage on some par-
tition.

The PutMetricData request of CloudWatch allows you to define your own metrics and
store your own data in CloudWatch and then use the existing tools and GUIs to access
and graph that data.

In this example, we will write a simple script that simply stores 100 integer values in a
custom metric over a period of time. We will then use the same query mechanism we
used previously on standard CloudWatch metrics to retrieve the data from Cloud-
Watch.

Note that if the data being gathered and stored in CloudWatch comes from an EC2
instance, that means that requests to CloudWatch will have to happen on that instance.
That, in turn, means that you will have to have some EC2 credentials available on the
instance. It is dangerous, however, to store the main credentials for your account on
any server that is accessible from the outside world, so be very careful and think through
how you want to handle this. Specifically, you might want to check out Recipe 2.15 for
suggestions about passing safer credentials to instances.

Example 2-18. CloudWatch Custom Metrics

>>> import boto, time, datetime
>>> start_time = datetime.datetime.utcnow()
>>> cw = boto.connect_cloudwatch()
>>> for i in range(0,100):
... cw.put_metric_data('PAWS', 'FooCount', i)
... time.sleep(5)
...
True
True
True
True
...
>>> end_time = datetime.datetime.utcnow()
>>> cw.list_metrics(namespace='PAWS')

36 | Chapter 2: EC2 Recipes

[Metric:FooCount]
>>> metric.query(start_time, end_time, 'Maximum')
[{u'Timestamp': datetime.datetime(2011, 9, 20, 21, 30),
u'Maximum': 78.0, u'Unit': u'None'},
{u'Timestamp': datetime.datetime(2011, 9, 20, 21, 27),
u'Maximum': 42.0, u'Unit': u'None'},
{u'Timestamp': datetime.datetime(2011, 9, 20, 21, 24),
u'Maximum': 7.0, u'Unit': u'None'},
{u'Timestamp': datetime.datetime(2011, 9, 20, 21, 28),
u'Maximum': 54.0, u'Unit': u'None'},
{u'Timestamp': datetime.datetime(2011, 9, 20, 21, 29),
u'Maximum': 66.0, u'Unit': u'None'},
{u'Timestamp': datetime.datetime(2011, 9, 20, 21, 25),
u'Maximum': 18.0, u'Unit': u'None'},
{u'Timestamp': datetime.datetime(2011, 9, 20, 21, 32),
u'Maximum': 99.0, u'Unit': u'None'},
{u'Timestamp': datetime.datetime(2011, 9, 20, 21, 22),
u'Maximum': 1.0, u'Unit': u'None'},
{u'Timestamp': datetime.datetime(2011, 9, 20, 21, 31),
u'Maximum': 90.0, u'Unit': u'None'},
{u'Timestamp': datetime.datetime(2011, 9, 20, 21, 26),
u'Maximum': 30.0, u'Unit': u'None'}]
>>> metric.query(start_time, end_time, 'Average')
[{u'Timestamp': datetime.datetime(2011, 9, 20, 21, 30),
u'Average': 72.5, u'Unit': u'None'},
{u'Timestamp': datetime.datetime(2011, 9, 20, 21, 27),
u'Average': 36.5, u'Unit': u'None'},
{u'Timestamp': datetime.datetime(2011, 9, 20, 21, 24),
u'Average': 3.5, u'Unit': u'None'},
{u'Timestamp': datetime.datetime(2011, 9, 20, 21, 28),
u'Average': 48.5, u'Unit': u'None'},
{u'Timestamp': datetime.datetime(2011, 9, 20, 21, 29),
u'Average': 60.5, u'Unit': u'None'},
{u'Timestamp': datetime.datetime(2011, 9, 20, 21, 25),
u'Average': 13.0, u'Unit': u'None'},
{u'Timestamp': datetime.datetime(2011, 9, 20, 21, 32),
u'Average': 95.0, u'Unit': u'None'},
{u'Timestamp': datetime.datetime(2011, 9, 20, 21, 22),
u'Average': 1.0, u'Unit': u'None'},
{u'Timestamp': datetime.datetime(2011, 9, 20, 21, 31),
u'Average': 84.5, u'Unit': u'None'},
{u'Timestamp': datetime.datetime(2011, 9, 20, 21, 26),
u'Average': 24.5, u'Unit': u'None'}]
>>>

2.15 Executing Custom Scripts upon Instance Startup
Problem
You need to run custom scripts each time a new instance is started.

2.15 Executing Custom Scripts upon Instance Startup | 37

Solution
Use the user_data feature to pass scripts and/or data to your newly started instance.

Discussion
Once you get beyond the experimentation phase with EC2, you will quickly find that
in addition to just starting an instance, you want to prepare that instance for a particular
task. Why would you be starting an instance if you didn’t have an important job for it
to perform? It turns out there are two main schools of thought regarding how best to
accomplish this:

Custom images
This approach focuses on starting with a plain vanilla image and then configuring
all of the required software necessary to perform the desired task. Once everything
is installed and configured, you create a new image based on this fully configured
image, and that becomes the image that you use. When an instance based on this
image is started, it has everything it needs to perform its task.

Startup time configuration
This approach also starts with a plain vanilla image, but all of the installation and
configuration is done when the instance starts up. This could be accomplished with
scripts and/or data that are passed the instance at startup time, or it could use a
more sophisticated, centralized configuration service like Puppet or Chef.

Deciding which is right for you is a trade-off. Custom images provide quick start time
and fewer dependencies but are less flexible. Each time you want to update the software
on the image, you have to rebundle it. On the other hand, using scripts or configuration
engines makes it easy to tweak the configuration at any time and see the effect as soon
as you start a new instance. However, depending on how much installation and con-
figuration is required, it could take a considerable amount of time for a new instance
to become fully operational, and if you are installing software from public package
repositories, there is always a chance that they may be unavailable, which would pre-
vent the script from completing.

Many people end up using some combination of the two approaches. Big packages like
databases and web servers can be built into the image, because they take a long time
to install and don’t change that often, whereas application code and data can be con-
figured through scripts. This is a complicated topic and very application-specific; how-
ever, I do want to show a couple of examples of passing data and scripts to newly started
instances to give you some idea of the power and flexibility that are available to you.

Our first recipe will use the user-data scripts popularized by Eric Hammond. This
technique works out of the box with modern Ubuntu images as well as with the Amazon
Linux AMI. You can simply pass a shell script as user-data when the instance is
launched, and the shell script will be executed as root on the instance at launch. The
example script, taken from the Ubuntu website, simply writes a message to a file on

38 | Chapter 2: EC2 Recipes

http://puppetlabs.com/
http://opscode.com/
http://alestic.com/
http://aws.amazon.com/amazon-linux-ami/
http://aws.amazon.com/amazon-linux-ami/

the file system. After the instance is up and running, you can log in and see if the file
exists.

Example 2-19. A Simple User-Data Script

>>> from ec2_launch_instance import launch_instance
>>> script = """#!/bin/sh
... echo "Hello World. The time is now $(date -R)!" | tee /root/output.txt
... """
>>> instance, cmdshell = launch_instance(user_data=script)
Security Group: paws already authorized
waiting for instance
.
.
.
.
done
SSH Connection refused, will retry in 5 seconds
>>> cmdshell.shell()

 __| __|_)
 _| (/ Amazon Linux AMI
 ___|___|___|

See /usr/share/doc/system-release/ for latest release notes.
No packages needed for security; 1 packages available
[ec2-user@domU-12-31-39-00-E4-53 ~]# sudo su
[ec2-user@domU-12-31-39-00-E4-53 ~]# cd /root
[ec2-user@domU-12-31-39-00-E4-53 ~]# ls
output.txt
[ec2-user@domU-12-31-39-00-E4-53 ~]# cat output.txt
Hello World. The time is now Wed, 21 Sep 2011 23:53:51 +0000!
[ec2-user@domU-12-31-39-00-E4-53 ~]# exit
[ec2-user@domU-12-31-39-00-E4-53 ~]$ logout

*** EOF
>>> instance.terminate()
>>>

As you can see, we pass the shell script in as user_data when we launch the instance,
and when we log in after launch, we can see that the file output.txt has, in fact, been
created, indicating that the script has been run. The mechanism behind this is quite
simple. A special program is run at boot time that inspects the user_data passed to the
instance, and if it begins with a shebang (#!), it will try to execute the script as code.
The script will be run as root, so it has full access to the instance.

The next example will be a bit more ambitious. We will use several key features of a
package called CloudInit, which is sort of a grown-up version of user-data scripts
developed by Canonical. The CloudInit package is also automatically supported by
modern Ubuntu distros as well as Amazon Linux AMI images. CloudInit allows you
to package up a number of items, such as shell scripts, configuration information, up-
start jobs, and the like, in a single MIME multipart package and send the whole package

2.15 Executing Custom Scripts upon Instance Startup | 39

https://help.ubuntu.com/community/CloudInit
http://aws.amazon.com/amazon-linux-ami/

to your instance to be evaluated and executed upon launch. You can even compress
the package with gzip to pack more stuff into your 16 K limit on user_data.

For this example, we will be installing a set of Metric objects on our newly launched
instance. Each Metric object will consist of a chunk of Python code that will be re-
sponsible for gathering some data from our running instance and then storing that data
as a custom metric in CloudWatch. This custom metric data can then be queried using
any existing CloudWatch-enabled tool and can be hooked into alarms in SNS, as shown
in Recipe 2.13.

Before we get started with the code, we should first deal with a security question. If
each of our Metric objects that we install needs to write custom metric data to Cloud-
Watch, we will need to have AWS credentials on the instances. This can be dangerous!
The access_key and secret_key associated with your AWS account are the keys to your
castle. Anyone who gains access to these can stop all of your instances, delete all of
your EBS volumes and snapshots, and wipe out all of your S3 objects. You need to
manage those credentials very carefully and, somehow, storing them in clear text on a
server that is potentially accessible to the Internet doesn’t sound like a good way to
manage them.

Fortunately, AWS has a very useful service called IAM (Identity and Access Manage-
ment) that allows you to create users within your AWS account. These users have their
own access_key and secret_key, separate from your account credentials. You can create
and delete these users at will, either through the web console or via the API. In addition,
each of these users can have JSON policies associated with them to finely tune which
services each user has access to, which requests are allowed for each service, and which
resources they can access.

Example 2-20 shows a small Python script that uses boto to create a new user and to
associate a JSON policy with that user that gives the user access to a single request in
a single service, the PutMetricData request of CloudWatch. It then creates a boto.cfg
file that contains those credentials. We will need this file later in the example.

We can then pass these limited credentials to our newly launched instances and be
comforted in knowing that, even if someone did break into our server and grab those
credentials, the worst he or she could do would be to store bogus data in CloudWatch.
Still not a good thing, but a risk that seems manageable.

Example 2-20. Creating a Restricted User with IAM

import boto

Create a restricted user using IAM

The following JSON policy was generated using the
AWS Policy Generator app.
http://awspolicygen.s3.amazonaws.com/policygen.html

policy_json = """{

40 | Chapter 2: EC2 Recipes

 "Statement": [
 {
 "Sid": "Stmt1316576423630",
 "Action": [
 "cloudwatch:PutMetricData"
],
 "Effect": "Allow",
 "Resource": "*"
 }
]
}"""

def create_restricted_user(user_name):
 """
 Create a new user in this account. The user will be
 restricted by the JSON policy document above.
 This function returns a tuple containing the access key
 and secret key for the new account.

 user_name The name of the new user.
 """
 iam = boto.connect_iam()
 user = iam.create_user(user_name)
 keys = iam.create_access_key(user_name)
 response = iam.put_user_policy(user_name,
 'CloudWatchPutMetricData',
 policy_json)
 fp = open('boto.cfg', 'w')
 fp.write('[Credentials]\n')
 fp.write('aws_access_key_id = %s\n' % keys.access_key_id)
 fp.write('aws_secret_access_key = %s\n' % keys.secret_access_key)
 fp.close()

With that detail out of the way, we can focus on defining our custom metric code and
getting it installed and running on newly launched instances. The metric we will use
for this example is disk usage (what percentage of space on our root volume is avail-
able). This is not data that you can get from standard CloudWatch metrics, and it is
useful to know, since it’s rarely a good thing when your server runs out of disk space.
Below, you will see the Python code that will calculate available disk space (as a per-
centage of total space) and store that as a custom metric in CloudWatch.

Example 2-21. Custom Metric for Disk Usage

#!/usr/bin/env python
import boto
import time
import datetime
import os

def main():
 cw = boto.connect_cloudwatch()
 md = boto.utils.get_instance_metadata()
 now = datetime.datetime.utcnow()
 stats = os.statvfs('/')

2.15 Executing Custom Scripts upon Instance Startup | 41

 total = float(stats.f_blocks * stats.f_bsize)
 available = float(stats.f_bavail * stats.f_bsize)
 percent_used = int(100 - 100 * (available / total))
 print 'metric_disk_usage: %d' % percent_used
 cw.put_metric_data(namespace='PAWS',
 name='DiskUsage',
 value=percent_used,
 timestamp=now,
 unit='Percent',
 dimensions=[{'InstanceId' : md['instance-id']}])

if __name__ == "__main__":
 main()

Now that we have our metric code, we need to get it installed and running on our newly
launched instances. Example 2-22 is responsible for constructing the CloudInit-com-
patible user data that will be passed to the instance. This code assumes that you have
stored the boto.cfg file generated above along with metric code together in the same
directory. It will package those items, along with a couple of other things, into a single
MIME multipart file. But how will CloudInit know what to do with our config file and
metric code? Well, that’s where the part_handler comes in, the final piece of the puzzle.
The part_handler can tell CloudInit about new types of files that it is able to handle,
and then whenever CloudInit comes across that type of file, it will call our part_han
dler to take care of it. Example 2-22 shows the part_handler.

Example 2-22. Custom CloudInit Part Handler

#part-handler

import os

def list_types():
 """
 Return a list of mime-types that are handled by this module.
 """
 return(['text/x-config', 'text/x-metric'])

def handle_part(data, ctype, filename, payload):
 """
 data: the cloudinit object
 ctype: '__begin__', '__end__', or the specific mime-type of the part
 filename: the filename for the part, or dynamically generated part if
 no filename is given attribute is present
 payload: the content of the part (empty for begin or end)
 """
 if ctype == 'text/x-config':
 path = os.path.join('/etc', filename)
 fp = open(path, 'w')
 fp.write(payload)
 fp.close()
 print '==== wrote %s payload to %s ====' % (ctype, path)
 elif ctype == 'text/x-metric':
 # Save metric command as an executable

42 | Chapter 2: EC2 Recipes

 path = os.path.join('/usr/local/sbin', filename)
 fp = open(path, 'w')
 fp.write(payload)
 fp.close()
 os.chmod(path, 0755)
 # Add an entry to tell cron to run this every minute
 path = os.path.join('/etc/cron.d', filename)
 fp = open(path, 'w')
 fp.write('root /usr/local/sbin/%s' % filename)
 fp.close()

The final piece of the puzzle is the code that bundles everything up to send to the
instance when we run it. Let’s take a look at Example 2-23.

Example 2-23. Custom CloudInit Packager

from email.mime.multipart import MIMEMultipart
from email.mime.text import MIMEText
import gzip
import cStringIO
import os

script = """#!/bin/sh
echo "Installing boto..."
cd /root
git clone git://github.com/boto/boto.git
cd boto
python setup.py install
echo "...done"
"""

cloud_config = """
packages:
 - python-setuptools

runcmd:
 - [easy_install, boto]
"""

def create_txt_part(path, subtype, filename=None):
 fp = open(path)
 s = fp.read()
 fp.close()
 txt = MIMEText(s, _subtype=subtype)
 if filename:
 txt.add_header('Content-Disposition',
 'attachment', filename=filename)
 return txt

def build_userdata(metric_dir):
 mp = MIMEMultipart()
 # Add our part handler
 path = os.path.join(metric_dir, 'metric_part_handler.py')
 txt = create_txt_part(path, 'part-handler', 'metric_part_handler.py')
 mp.attach(txt)

2.15 Executing Custom Scripts upon Instance Startup | 43

 # Add the boto config file
 path = os.path.join(metric_dir, 'boto.cfg')
 txt = create_txt_part(path, 'x-config', 'boto.cfg')
 mp.attach(txt)
 # Add the cloud-config
 txt = MIMEText(cloud_config, _subtype='cloud-config')
 mp.attach(txt)
 # Add disk metric
 path = os.path.join(metric_dir, 'metric_disk_usage')
 txt = create_txt_part(path, 'x-metric', 'metric_disk_usage')
 mp.attach(txt)

 gfileobj = cStringIO.StringIO()
 gfile = gzip.GzipFile(fileobj=gfileobj, mode='wb')
 gfile.write(mp.as_string())
 gfile.close()

 return gfileobj.getvalue()

Example 2-24 shows the interactive session where we build our user_data and launch
our instance.

Example 2-24. A Simple User-Data Script

>>> from ec2_custom_script_server import build_userdata
>>> from ec2_launch_instance import launch_instance
>>> user_data = build_userdata(metric_dir='./metrics')
>>> instance, cmd = launch_instance(user_data=user_data)

And finally, after the instance has been running for a bit, Example 2-25 shows the
interactive session where we query CloudWatch for our new custom metric data.

Example 2-25. A Simple User-Data Script

>>> import boto
>>> cw = boto.connect_cloudwatch()
>>> ec2 = boto.connect_ec2()
>>> import datetime
>>> metrics = cw.list_metrics(namespace='PAWS', metric_name='DiskUsage')
>>> metrics
[Metric:DiskUsage]
>>> metric = metrics[0]
>>> r = ec2.get_all_instances([metric.dimensions['InstanceId'][0]])
>>> instance = r[0].instances[0]
>>> start_time = boto.utils.parse_ts(instance.launch_time)
>>> end_time = datetime.datetime.utcnow()
>>> metric.query(start_time, end_time, ['Maximum'])
[{u'Maximum': 12.0,
 u'Timestamp': datetime.datetime(2011, 9, 22, 15, 32),
 u'Unit': u'Percent'},
 {u'Maximum': 12.0,
 u'Timestamp': datetime.datetime(2011, 9, 22, 15, 17),
 u'Unit': u'Percent'},
 {u'Maximum': 12.0,
 u'Timestamp': datetime.datetime(2011, 9, 22, 15, 31),

44 | Chapter 2: EC2 Recipes

 u'Unit': u'Percent'},
 {u'Maximum': 12.0,
 u'Timestamp': datetime.datetime(2011, 9, 22, 14, 44),
 u'Unit': u'Percent'},
...
 {u'Maximum': 12.0,
 u'Timestamp': datetime.datetime(2011, 9, 22, 14, 39),
 u'Unit': u'Percent'}]

2.15 Executing Custom Scripts upon Instance Startup | 45

CHAPTER 3

S3 Recipes

3.1 Create a Bucket
Problem
Before you can store anything in S3, you need to first create a bucket to contain the
objects.

Solution
Use the create_bucket method to create a new bucket.

Discussion
Example 3-1 shows a function that takes the name of the bucket you want to create as
a parameter. It will then try to create that bucket. If the bucket already exists, it will
print an error.

Example 3-1. Create a Bucket

import boto

def create_bucket(bucket_name):
 """
 Create a bucket. If the bucket already exists and you have
 access to it, no error will be returned by AWS.
 Note that bucket names are global to S3
 so you need to choose a unique name.
 """
 s3 = boto.connect_s3()

 # First let's see if we already have a bucket of this name.
 # The lookup method will return a Bucket object if the
 # bucket exists and we have access to it or None.
 bucket = s3.lookup(bucket_name)
 if bucket:
 print 'Bucket (%s) already exists' % bucket_name

47

 else:
 # Let's try to create the bucket. This will fail if
 # the bucket has already been created by someone else.
 try:
 bucket = s3.create_bucket(bucket_name)
 except s3.provider.storage_create_error, e:
 print 'Bucket (%s) is owned by another user' % bucket_name
 return bucket

3.2 Create a Bucket in a Specific Location
Problem
You want to create a bucket in a specific geographic location.

Solution
Use the location parameter to the create_bucket method to specify the location of the
new bucket.

Discussion
Originally, there was just a single S3 endpoint and all data was stored in one region or
location, the eastern United States. Over time, however, the S3 service has expanded,
and there are now five region-specific endpoints:

• US Standard

• US-West (Northern California)

• EU (Ireland)

• Asia Pacific (Singapore)

• Asia Pacific (Japan)

There is a big difference, however, in the way S3 handles resources and regions. For
services like EC2, SimpleDB, SQS, and the like, the regions are treated as completely
separate services, and resources cannot be easily shared across these regions. For ex-
ample, if you want to create an EC2 instance in the EU region, you have to connect to
the EC2 EU endpoint to do so, and that instance is unknown to the other EC2 regions.
With S3, you specify a Location for the bucket when it is created, but once it is created,
you can access the bucket from any of the S3 endpoints. In addition, you can create an
EU bucket when you are talking to the US endpoint and vice versa. So, the resource
namespace is global to the entire S3 service, across all regions. The main reason you
might decide to talk to a region-specific endpoint is to get better latency in your
connections.

48 | Chapter 3: S3 Recipes

Example 3-2. Create a Bucket in a Specific Location

import boto
from boto.s3.connection import Location

def create_bucket(bucket_name, location=Location.DEFAULT):
 """
 Create a bucket. If the bucket already exists and you have
 access to it, no error will be returned by AWS.
 Note that bucket names are global to a S3 region or location
 so you need to choose a unique name.

 bucket_name - The name of the bucket to be created.

 location - The location in which the bucket should be
 created. The Location class is a simple
 enum-like static class that has the following attributes:

 DEFAULT|EU|USWest|APNortheast|APSoutheast
 """
 s3 = boto.connect_s3()

 # First let's see if we already have a bucket of this name.
 # The lookup method will return a Bucket object if the
 # bucket exists and we have access to it or None.
 bucket = s3.lookup(bucket_name)
 if bucket:
 print 'Bucket (%s) already exists' % bucket_name
 else:
 # Let's try to create the bucket. This will fail if
 # the bucket has already been created by someone else.
 try:
 bucket = s3.create_bucket(bucket_name, location=location)
 except s3.provider.storage_create_error, e:
 print 'Bucket (%s) is owned by another user' % bucket_name
 return bucket

3.3 Store Private Data
Problem
You want to store information that can only be accessed with your credentials.

Solution
Use one of the set_contents_from_* methods of the Key object to store the data in an
existing S3 bucket.

3.3 Store Private Data | 49

Discussion
By default, objects stored in S3 are accessible only with the credentials with which they
were created. So, just by storing the information in an S3 bucket in the default manner
we will keep the data private to the owner.

Example 3-3. Store Private Data

import boto

def store_private_data(bucket_name, key_name, path_to_file):
 """
 Write the contents of a local file to S3 and also store custom
 metadata with the object.

 bucket_name The name of the S3 Bucket.
 key_name The name of the object containing the data in S3.
 path_to_file Fully qualified path to local file.
 """
 s3 = boto.connect_s3()
 bucket = s3.lookup(bucket_name)

 # Get a new, blank Key object from the bucket. This Key object only
 # exists locally until we actually store data in it.
 key = bucket.new_key(key_name)

 # First let's demonstrate how to write string data to the Key
 data = 'This is the content of my key'
 key.set_contents_from_string(data)

 # Now fetch the data from S3 and compare
 stored_key = bucket.lookup(key_name)
 stored_data = stored_key.get_contents_as_string()
 assert stored_data == data

 # Now, overwrite the data with the contents of the file
 key.set_contents_from_filename(path_to_file)

 return key

3.4 Store Metadata with an Object
Problem
You want to store additional metadata with an object in S3.

Solution
Use the x-amz-meta header to send additional metadata to store with the object in S3.

50 | Chapter 3: S3 Recipes

Discussion
In addition to the data stored in S3 as an object, you can store additional metadata with
that object at the time the object is created in S3. This is accomplished by sending
additional HTTP headers with the request. The headers are of the form:

 x-amz-meta-foo: bar

This would store the key/value pair foo=bar in the metadata of the object. Fortunately,
boto handles all of these details for you, so you simply need to provide a Python dic-
tionary of key/value pairs, as shown in Example 3-4.

Example 3-4. Store Metadata with an Object

import boto

def store_metadata_with_key(bucket_name,
 key_name,
 path_to_file,
 metadata):
 """
 Write the contents of a local file to S3 and also store custom
 metadata with the object.

 bucket_name The name of the S3 Bucket.
 key_name The name of the object containing the data in S3.
 path_to_file Fully qualified path to local file.
 metadata A Python dict object containing key/value
 data you would like associated with the object.
 For example: {'key1':'value1', 'key2':'value2'}
 """
 s3 = boto.connect_s3()
 bucket = s3.lookup(bucket_name)

 # Get a new, blank Key object from the bucket. This Key object only
 # exists locally until we actually store data in it.
 key = bucket.new_key(key_name)

 # Add the metadata to the Key object
 key.metadata.update(metadata)

 # Now, write the data and metadata to S3
 key.set_contents_from_filename(path_to_file)

 return key

def print_key_metadata(bucket_name, key_name):
 """
 Print the metadata associated with an S3 Key object.

 bucket_name The name of the S3 Bucket.
 key_name The name of the object containing the data in S3.
 """
 s3 = boto.connect_s3()
 bucket = s3.lookup(bucket_name)

3.4 Store Metadata with an Object | 51

 key = bucket.lookup(key_name)
 print key.metadata

3.5 Computing Total Storage Used by a Bucket
Problem
You want to find out how much storage a bucket is using.

Solution
Iterate through all of the keys in the bucket and total the bytes used.

Discussion
Because you are charged for the amount of storage you use in S3, you may want to
know how much data is stored in a particular bucket. The only way to do this is to
iterate over all of the keys in the bucket and total up the bytes used by each key.

boto makes this pretty easy, but note that if you have millions of keys in
a bucket, it can take a while to iterate over all of them.

Example 3-5. Computing Total Storage Used by a Bucket

import boto

def bucket_du(bucket_name):
 """
 Compute the total bytes used by a bucket.
 NOTE: This iterates over every key in the bucket. If you have millions of
 keys this could take a while.
 """
 s3 = boto.connect_s3()

 total_bytes = 0
 bucket = s3.lookup(bucket_name)
 if bucket:
 for key in bucket:
 total_bytes += key.size
 else:
 print 'Warning: bucket %s was not found!' % bucket_name
 return total_bytes

52 | Chapter 3: S3 Recipes

3.6 Copy an Existing Object to Another Bucket
Problem
You have a large object stored in S3 and you want to copy it or move it to another bucket.

Solution
Use the COPY directive to do a server-side copy of the object.

Discussion
The COPY operation was first added to S3 (in beta form) in May 2008. Prior to that, if
you wanted to copy or move an object stored in S3, the only option was to download
the object from S3 to a client machine and then re-upload the object to the desired
location in S3—an expensive and time-consuming operation for large objects.

Fortunately, the COPY operation now allows us to do the hard work on the server-side.
The COPY operation requires you to have read permission on the existing object and
write permission to the destination bucket. If you want to move the object, you must
perform an explicit DELETE operation after COPYing.

Example 3-6. Copy an Existing Object to Another Bucket

import boto

def copy_object(src_bucket_name,
 src_key_name,
 dst_bucket_name,
 dst_key_name,
 preserve_metadata=True):
 """
 Copy an existing object to another location.

 src_bucket_name Bucket containing the existing object.
 src_key_name Name of the existing object.
 dst_bucket_name Bucket to which the object is being copied.
 dst_key_name The name of the new object.
 preserve_metadata If True, all metadata on the original object
 will be preserved on the new object. If False
 the new object will have the default metadata.
 """
 s3 = boto.connect_s3()
 bucket = s3.lookup(src_bucket_name)

 # Lookup the existing object in S3
 key = bucket.lookup(src_key_name)

 # Copy the key back on to itself, with new metadata
 return key.copy(dst_bucket_name, dst_key_name, preserve_acl=preserve_acl)

3.6 Copy an Existing Object to Another Bucket | 53

3.7 Modify the Metadata of an Existing Object
Problem
You want to change the metadata associated with an existing object in S3.

Solution
Use the COPY directive to do an in-place copy of the object with the new metadata.

Discussion
The metadata for an object is defined when the object is created in S3. In the past, if
you ever wanted to change the metadata, you had to upload the entire object again.
However, the COPY operation now provides a way to change the metadata without in-
curring the time and cost of uploading the object data.

Example 3-7. Modify the Metadata of an Existing Object

import boto

def modify_metadata(bucket_name,
 key_name,
 metadata):
 """
 Update the metadata with an existing object.

 bucket_name The name of the S3 Bucket.
 key_name The name of the object containing the data in S3.
 metadata A Python dict object containing the new metadata.
 For example: {'key1':'value1', 'key2':'value2'}
 """
 s3 = boto.connect_s3()
 bucket = s3.lookup(bucket_name)

 # Lookup the existing object in S3
 key = bucket.lookup(key_name)

 # Copy the key back on to itself, with new metadata
 key.copy(bucket.name, key.name, metadata, preserve_acl=True)

 return key

3.8 Find Out Who Is Accessing Your Data
Problem
You have content stored in S3 that is accessible to other people, and you would like to
find out who is accessing it and when.

54 | Chapter 3: S3 Recipes

Solution
Use Server Access Logging to log access to your data.

Discussion
Server Access Logging can be enabled on any S3 bucket and will record information in
log files each time data in the bucket is accessed. The log files themselves are also stored
in an S3 bucket. You can store the logs in the same bucket you are logging or in another
bucket, but the logged bucket and the destination bucket must be in the same S3 lo-
cation.

Once logging is enabled, log files will start to appear in the logging destination bucket.
You can specify a prefix string that will be prepended to all log file names to make it
easier to identify specific logs.

Logs are generated on a best-effort basis, so there is no guarantee that
every access will be logged. If you require an absolute guarantee, you
will need to devise a more deterministic approach.

Example 3-8. Enable Logging on an Existing Bucket

import boto

def enable_logging(bucket_name,
 log_bucket_name,
 log_prefix=None):
 """
 Enable logging on a bucket.

 bucket_name Bucket to be logged.
 log_bucket_name Bucket where logs will be written.
 log_prefix A string which will be prepended to all log file names.
 """
 s3 = boto.connect_s3()
 bucket = s3.lookup(bucket_name)
 log_bucket = s3.lookup(log_bucket_name)

 # First configure log bucket as a log target.
 # This sets permissions on the bucket to allow S3 to write logs.
 log_bucket.set_as_logging_target()

 # Now enable logging on the bucket and tell S3
 # where to deliver the logs.
 bucket.enable_logging(log_bucket, target_prefix=log_prefix)

def disable_logging(bucket_name):
 """
 Disable logging on a bucket.

 bucket_name Bucket that will no longer be logged.
 """

3.8 Find Out Who Is Accessing Your Data | 55

 s3 = boto.connect_s3()
 bucket = s3.lookup(bucket_name)
 bucket.disable_logging()

3.9 Reduce the Cost of Storing Noncritical Data
Problem
You have large amounts of noncritical data stored in S3, and you would like to reduce
the cost of storage.

Solution
Use Reduced Redundancy Storage to reduce storage costs.

Discussion
S3 provides very durable data storage. In fact, by default, S3 provides 11 nines
(99.999999999%) of durability and can survive failures in two independent data cen-
ters. That’s great to know, but if you are storing data that is transient or that is already
stored reliably elsewhere, you may not really need that level of durability.

Reduced Redundancy Storage (RRS) gives you the option to trade-off some of that
durability for reduced storage costs. For 33% less cost, you get 4 nines (99.99%) du-
rability. If you are storing lots of this kind of data in S3, those savings can add up in a
hurry.

Example 3-9. Store an Object in S3 with RRS Storage Class

import boto
import os

def upload_file_rrs(local_file,
 bucket_name,
 key_name=None):
 """
 Upload a local file to S3 and store is using Reduced Redundancy Storage.

 local_file Path to local file.
 bucket_name Bucket to which the file will be uploaded.
 key_name Name of the new object in S3. If not provided, the basename
 of the local file will be used.
 """
 s3 = boto.connect_s3()
 bucket = s3.lookup(bucket_name)

 # Expand common shell vars in filename.
 local_file = os.path.expanduser(local_file)
 local_file = os.path.expandvars(local_file)

 # If key_name was not provided, use basename of file.

56 | Chapter 3: S3 Recipes

 if not key_name:
 key_name = os.path.basename(local_file)

 # Create a new local key object.
 key = bucket.new_key(key_name)

 # Now upload file to S3
 key.set_contents_from_filename(local_file, reduced_redundancy=True)

def copy_object_to_rrs(bucket_name,
 key_name):
 """
 Will change an existing standard storage class object to a
 Reduced Redundancy storage class object.

 bucket_name Bucket in which the existing key is located.
 key_name Name of the existing, standard storage key.
 """
 s3 = boto.connect_s3()
 bucket = s3.lookup(bucket_name)
 key = bucket.lookup(key_name)

 return key.copy(bucket_name, key_name, reduced_redundancy=True,
 preserve_acl=True)

3.10 Generating Expiring URLs for S3 Objects
Problem
You have private data that you would like to share with someone, but you don’t want
to make it widely available.

Solution
Use Query String Authentication (QSA) to generate an expiring URL to your data in S3.

Discussion
One neat feature of S3 is the ability to generate self-expiring URLs pointing to data in
S3. This allows you to share private data in S3 without changing the permissions of the
object. It also means that you can control how long the URL you pass on to your
collaborator will work. You can have it expire in 5 seconds, 5 days, 5 months, or any
other time period that seems appropriate. The example below shows an interactive
session that creates a new, private object in S3, generates a URL that expires in 30
seconds, retrieves the object data, waits 30 seconds, and then attempts to retrieve the
data again to show that access is, in fact, denied.

Example 3-10. Generate an Expiring URL for an S3 Object

$ python
Python 2.7.1 (r271:86882M, Nov 30 2010, 10:35:34)

3.10 Generating Expiring URLs for S3 Objects | 57

[GCC 4.2.1 (Apple Inc. build 5664)] on darwin
Type "help", "copyright", "credits" or "license" for more information.
>>> import boto, urllib2, time
>>> s3 = boto.connect_s3()
>>> b = s3.lookup('garnaat_pub')
>>> k = b.new_key('my_private_data_to_share.txt')
>>> k.set_contents_from_string('Python and AWS')
>>> url = k.generate_url(30)
>>> urllib2.urlopen(url).read()
'Python and AWS'
>>> time.sleep(30)
>>> urllib2.urlopen(url).read()
Traceback (most recent call last):
...
urllib2.HTTPError: HTTP Error 403: Forbidden
>>>

3.11 Preventing Accidental Deletion of Data from S3
Problem
You are using S3 as the primary storage location for critical data. You want to take
precautions to make sure you don’t accidentally delete the data.

Solution
Use Versioning and MFA Delete to protect your data in S3.

Discussion
As we mentioned before, S3 provides very durable data storage. But all that redundancy
won’t help if you accidentally delete data or if someone else maliciously deletes data.
The S3 service provides two powerful tools to help you further protect your data:

Versioning
Versioning means that you can have multiple objects within a bucket that all have
the same name or key. This is possible because when versioning is enabled for a
bucket, in addition to the name that you provide for an object, S3 also gives each
object a unique version ID. With a version-enabled bucket, the simple DELETE op-
eration cannot actually delete an object from your bucket. All it does is create a
special delete marker in the bucket that shows the object was removed; you can
still retrieve it by using its name and version ID. To actually delete an object, you
need to perform a versioned DELETE operation that specifies both the object name
and the version ID. This makes accidental deletion much less likely.

MFA Delete
MFA (MultiFactor Authorization) Delete extends the protection of objects even
further. Once MFA Delete is configured on a bucket, an object cannot be deleted
without first providing an authentication token from a security device associated

58 | Chapter 3: S3 Recipes

with your account. This makes accidental deletion almost impossible and also
means that someone who gains access to your AWS credentials still will be unable
to delete your data unless they have also gained access to your physical security
device.

For more information on MFA, see http://aws.amazon.com/mfa/

In this recipe, we will first show how to enable versioning on a bucket and how to access
the version ID for objects within that bucket. Then we will show how to enable MFA
Delete on a bucket and use the MFA device to actually perform a deletion.

Example 3-11. Enable Versioning on a Bucket

import boto

def configure_versioning(bucket_name, enable=True):
 """
 Enable versioning on a bucket.

 bucket_name Bucket to be configured.
 enable A boolean flag to indicate whether we are enabling
 or disabling versioning for the bucket.
 """
 s3 = boto.connect_s3()
 bucket = s3.lookup(bucket_name)

 # Get the current status of versioning on the bucket
 # and print the value out.
 config = bucket.get_versioning_status()
 print 'Current Versioning Status: ', config

 # Now enable versioning on the bucket.
 bucket.configure_versioning(enable)

 # Update the status of versioning and print the new value.
 config = bucket.get_versioning_status()
 print 'New Versioning Status: ', config

Example 3-12. Enable MFA Delete on a Bucket

import boto

def configure_mfa_delete(bucket_name,
 mfa_serial_number,
 mfa_token,
 enable=True):
 """
 Enable versioning on a bucket.

 bucket_name Bucket to be configured.
 mfa_serial_number The serial number of the MFA device associated
 with your account.
 mfa_token The current token displayed on the MFA device.
 enable A boolean value to indicate whether MFA Delete
 is being enabled or disabled.

3.11 Preventing Accidental Deletion of Data from S3 | 59

http://aws.amazon.com/mfa/

 """
 s3 = boto.connect_s3()
 bucket = s3.lookup(bucket_name)

 # Get the current status of versioning on the bucket
 # and print the value out.
 config = bucket.get_versioning_status()
 print 'Current Versioning Status: ', config

 if 'Versioning' in config and config['Versioning'] == 'Enabled':
 versioning = True
 else:
 versioning = False

 # Make change to configuration. This method takes a tuple
 # consisting of the mfa serial # and token.
 bucket.configure_versioning(versioning=versioning, mfa_delete=enable,
 (mfa_serial_number, mfa_token))

 # Update the status of versioning and print the new value.
 config = bucket.get_versioning_status()
 print 'New Versioning Status: ', config

3.12 Hosting Static Websites on S3
Problem
You want to host a static website on S3.

Solution
Use the website configuration tools.

Discussion
In many ways, S3 seems like a perfect place to host a static website. There is virtually
infinite storage capacity, fantastic bandwidth, high availability, and the ability to scale
to handle lots of requests. So, why don’t more people host websites on S3?

The main reason is that S3 did not provide support for automatically serving a default
page (e.g., index.html) like a web server does, so you would have to count on your
website visitors typing in the full path to the web page, or else they would be presented
with a rather ugly and unfriendly XML page.

But that has all changed with the introduction of a new website feature in S3. Using
this feature, you can upload the files for your website to an S3 bucket and then use a
configuration command to tell S3 the name of the object in the bucket to use as the
default page. You can also specify a custom error page in the same way.

This example defines an upload_website function that will automatically upload all of
the files associated with your website from a local directory tree. It then configures the

60 | Chapter 3: S3 Recipes

bucket and all files with the correct permissions and sets up the index and error files.
Finally, it prints out the exact URL you can use to access your new website.

Example 3-13. Host a Website on S3

import boto
import os
import time

def upload_website(bucket_name,
 website_dir,
 index_file,
 error_file=None):
 """
 Upload a static website contained in a local directory to
 a bucket in S3.

 bucket_name The name of the bucket to upload website to.
 website_dir Fully-qualified path to directory containing
 website.
 index_file The name of the index file (e.g. index.html)
 error_file The name of the error file. If not provided
 the default S3 error page will be used.
 """
 s3 = boto.connect_s3()
 bucket = s3.lookup(bucket_name)

 # Make sure bucket is publicly readable
 bucket.set_canned_acl('public-read')

 for root, dirs, files in os.walk(website_dir):
 for file in files:
 full_path = os.path.join(root, file)
 rel_path = os.path.relpath(full_path, website_dir)
 print 'Uploading %s as %s' % (full_path, rel_path)
 key = bucket.new_key(rel_path)
 key.content_type = 'text/html'
 key.set_contents_from_filename(full_path, policy='public-read')

 # Now configure the website
 bucket.configure_website(index_file, error_file)

 # A short delay, just to let things become consistent.
 time.sleep(5)

 print 'You can access your website at:'
 print bucket.get_website_endpoint()

3.13 Uploading Large Objects to S3
Problem
You want to efficiently upload large objects to S3.

3.13 Uploading Large Objects to S3 | 61

Solution
Use the MultiPart Upload feature.

Discussion
If you have large files to upload to S3, the new MultiPart feature of S3 is great. In the
past, the only choice was to upload the entire file in one operation. If that operation
failed on the very last byte of the file, you would have to start the whole process again.
Now you can split the file up into as many chunks as you want and upload each chunk
individually. If you have a failure with one chunk, it won’t affect the others. When all
of the chunks have been uploaded, you complete the operation and S3 then combines
all of the chunks back into a single file. Because each chunk upload is a completely
separate operation, it’s also possible (and desirable) to use threads or processes to get
several upload operations going concurrently to increase the overall throughput.

The easiest way to take advantage of this is to use the s3multiput utility that is installed
as part of boto. This command-line utility handles all of the details for you. You just
tell it where the input file is located and tell it what S3 bucket you want to store the file
in, and it creates a set of subprocesses (based on the number of CPU cores you have)
and gives each subprocess a list of chunks to upload. In the example below, the -c
option tells the command to also print out some information that shows us the progress
of each of the subprocesses:

% ls -l
...
-rw-r--r-- 1 mitch staff 265060652 Jun 21 08:45 mybigfile
...
$ s3multiput -b my_bucket -c 20 mybigfile
0 bytes transferred / 265060652 bytes total
0 bytes transferred / 265060652 bytes total
0 bytes transferred / 265060652 bytes total
0 bytes transferred / 265060652 bytes total
...
265060652 bytes tranferred / 265060652 bytes total
265060652 bytes tranferred / 265060652 bytes total
265060652 bytes tranferred / 265060652 bytes total
265060652 bytes tranferred / 265060652 bytes total
$

If you want to come up with your own custom code to handle MultiPart uploads, you
can check out the source code for s3multipart as a good starting point.

62 | Chapter 3: S3 Recipes

http://aws.typepad.com/aws/2010/11/amazon-s3-multipart-upload.html

About the Author
Mitch Garnaat is a software developer at Eucalyptus Systems, where he is responsible
for the development of tools to make it easier to create and manage cloud computing
resources. Previously, as a principal engineer at Xerox PARC, he was the co-inventor
and lead developer of DocuShare, a web-based document management product from
Xerox. He is the creator of boto, an open source Python library for cloud computing.

	Table of Contents
	Preface
	Conventions Used in This Book
	Using Code Examples
	Safari® Books Online
	How to Contact Us

	Chapter 1. General Info
	1.1 A Quick Note About Python
	1.2 Installing boto
	Download and Install from github.com
	Manually Download and Install boto
	Installing boto with easy_install
	Installing boto with pip
	Installing boto with virtualenv
	Installing paramiko
	Installing euca2ools

	1.3 Getting Started with Amazon Web Services
	Create Your AWS Account
	Managing Your AWS Credentials in boto
	A Quick Test

	1.4 Using boto with Eucalyptus
	What Is Eucalyptus?
	Getting and Installing Eucalyptus
	Using the Eucalyptus Community Cloud
	Managing Your Eucalyptus Credentials in boto

	1.5 Using boto with Google Cloud Storage
	What Is Google Cloud Storage?
	Managing Your Google Cloud Storage Credentials in boto

	1.6 Finding Available Regions for AWS
	1.7 Enabling Debug Output with boto
	1.8 Controlling Socket Timeouts in boto

	Chapter 2. EC2 Recipes
	2.1 Launching an Instance
	Problem
	Solution
	Discussion

	2.2 Keeping Track of Instances with Tags
	Problem
	Solution
	Discussion

	2.3 Accessing the Console Log
	Problem
	Solution
	Discussion

	2.4 Uploading Your Own SSH Keypair
	Problem
	Solution
	Discussion

	2.5 Synchronizing SSH Keypairs Across EC2 Regions
	Problem
	Solution
	Discussion

	2.6 Associate an Elastic IP Address with an Instance
	Problem
	Solution
	Discussion

	2.7 Attach a Persistent EBS Volume to an Instance
	Problem
	Solution
	Discussion

	2.8 Back Up Your EBS Volumes
	Problem
	Solution
	Discussion

	2.9 Restore a Volume from a Snapshot
	Problem
	Solution
	Discussion

	2.10 Clone an Existing Instance
	Problem
	Solution
	Discussion

	2.11 Find All Running EC2 Instances
	Problem
	Solution
	Discussion

	2.12 Monitoring the Performance of Your Instance
	Problem
	Solution
	Discussion

	2.13 Getting Notifications
	Problem
	Solution
	Discussion

	2.14 Storing Custom Data in CloudWatch
	Problem
	Solution
	Discussion

	2.15 Executing Custom Scripts upon Instance Startup
	Problem
	Solution
	Discussion

	Chapter 3. S3 Recipes
	3.1 Create a Bucket
	Problem
	Solution
	Discussion

	3.2 Create a Bucket in a Specific Location
	Problem
	Solution
	Discussion

	3.3 Store Private Data
	Problem
	Solution
	Discussion

	3.4 Store Metadata with an Object
	Problem
	Solution
	Discussion

	3.5 Computing Total Storage Used by a Bucket
	Problem
	Solution
	Discussion

	3.6 Copy an Existing Object to Another Bucket
	Problem
	Solution
	Discussion

	3.7 Modify the Metadata of an Existing Object
	Problem
	Solution
	Discussion

	3.8 Find Out Who Is Accessing Your Data
	Problem
	Solution
	Discussion

	3.9 Reduce the Cost of Storing Noncritical Data
	Problem
	Solution
	Discussion

	3.10 Generating Expiring URLs for S3 Objects
	Problem
	Solution
	Discussion

	3.11 Preventing Accidental Deletion of Data from S3
	Problem
	Solution
	Discussion

	3.12 Hosting Static Websites on S3
	Problem
	Solution
	Discussion

	3.13 Uploading Large Objects to S3
	Problem
	Solution
	Discussion

